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ABSTRACT

Very-long-baseline interferometry (VLBI) is a technique which
potentially can measure intercontinental distances with 1 cm

precision. Already, measurements have been made which have
nearly reached this goal, if we accept the standard deviations
calculated from statistical arguments. However, the sources
of errors in these measurements must be carefully analyzed and
accounted for to ensure reliablity in the interpretation of
results obtained from VLBI data analysis.

In this thesis, we concentrate on examining both the theory
and the quality of the VLBI delay measurements. Using the
redundant nature of the VLBI observations, we develop a number
of quality tests. These tests are applied to data taken in VLBI
experiments between July 1980 and January 1982. All of these
tests lead to similar qualitative conclusions about the performance
of the Mark III VLBI system. There are, however, differences
from each of these tests in the quantitative conclusions about
the system performance. These tests indicate that the actual
statistics of the VLBI group delay observations do not match the
theoretically calculated statistics.\ The differences between
the actual and theoretical statistics are of two types. Firstly,
there appears to be a proportional error in the calculated
standard deviations of between 1.1 and 1.2, which is probably
due to correlator non-reproducibility and the effects of instru-
mental dispersions. Secondly, there appears tG be a threshold

performance limit which can not be penetrated. This threshold
limits the accuracy of the X-band (n8.34 GHz) group delay
measurements to between 0.040 nsec (=1.2 cm) and 0.015 nsec (=0.5 cm),
depending on the experiment. The S-band C*2.3 GHz) system
appears to have a performance limit of 0.15 nsec (V4.5rm) for all
of the experiments analyzed.

We have also used data from the VLBI experiments conduc\ ed
between July 1980 and June 1983, to estimate the distances N'

between radio telescopes in North America and Europe. The es e
of the Westford, Massachusetts to Onsala, Sweden baseline length, K-

obtained from 40 experiments using these sites, has a weighted
rot-mean-square repeatability of 2.0 cm and a statistical standard-.-
deviation of 0.6 cm. However, studies of these solutions indicate
that the actual standard deviation of the baseline length estimate
is probably more in accord with repeatability rather than with
the statistical estimate of its value obtained from the analysis
of the ensemble of data. The estimate of the rate of change of
the length of this baseline is 1.6 + 0.5 cm/yr, which is consistent
with the inferred average rate of 1.7 cm/yr.

The determination of the tidal parameters of the earth are
;Ils1 investigated. The results obtained are consistent with the
ciirrently accepted values for these parameters.
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1. Introduction

In April 1968 the first bandwidth-synthesis, very-long-

" baseline-interferometry (VLBI) experiment was conducted using

the NRAO Mark I recording system (Whitney, 1974). Two experi-

. ments later in January 1969 the bandwidth synthesis technique

was successfully used to measure accurate group delays (errors

<10 nsecs or -3 m effective path length). The January 1969

experiment yielded estimates of the relative station locations

of two radio telescopes, one in Westford, Massachusetts, the

other in Green Bank, West Virginia which were separated by

approximately eight hundred kilometers. These estimates

agreed with conventional survey results to within 2 m in the

distance between the sites (or baseline length) and within 5 m

in orientation. Thirteen years after the first successful

experiment, baseline lengths of over eight thousand kilometers

are now routinely being measured using the Mark III VLBI

system with precisions of a few centimeters -- unmatched by

any conventional surveying techniques. In this thesis we will

investigate the accuracy of the results achievable with the

currently available Mark III system and the improvement we can

expect in the future.

The measurement of group delays gave the bandwidth

synthesis VLBI system a major advantage over other VLBI

systems available in 1969. Prior to this time the accuracy of

the group delay measurements had been limited by the bandwidth

of the recording systems. The maximum recorded bandwidth

6" '/ " '.'.". . ' . ' . -" ". v'. - - " " ' ' .- '/ ' -[ '. -" . ' .".'. -" . - ' " " .k .
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available was 4 MHz for the Canadian long baseline interferom-

etry (LBI) system. The NRAO Mark I recording system was

* capable of recording bandwidth of only 360 kHz. The bandwidth

* synthesis system (in 1969) measured group delays by physically

changing the frequency of the second local oscillator in the

receiver and sequentially sampling the output of the receiver

* with the narrow bandwidth recorder. This method allowed a

large bandwidth to be sampled (V"spanned") while recording

with a narrow bandwidth. The accuracy of the group delay

* determination then became a function of the spanned bandwidth

rather than the recorded bandwidth. With the Mark III VLBI

* system it is no longer necessary to switch the frequency of

the local oscillators because signals from up to 28 channels,

each of 2 Mhz bandwidth can be recorded simultaneously,

eliminating the need to switch frequencies.

Even before the first successful bandwidth synthesis VLBI

* experiment, the applications of such a powerful geodetic

* technique were being envisaged (Shapiro, 1968; Shapiro and

- Knight, 1970). Potentially, intercontinental baseline length~s

could be measured with precisions of a few centimeters. The

applications of such results would be numerous. For the first

- time, it would be possible to determine the current-day plate

velocities with a time resolution of only a few years. These

rates could be measured between points thousands of kilometers

away from active spreading centers or convergence zones,

thereby being immune to any local effects at these centers or

zones. Also, the technique could be used to monitor earth
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rotation and polar motion with unprecedented precision and

time resolution. It was envisaged that the position of the

rotation axis with respect to the crust of the earth could be

determined with a precision of better than 10 cm every da"

The system would provide an almost inertial reference frame

because of the great distances to the quasars which were being

observed. After several decades of operations the precession

constant and terms in the nutation series could be accurately

* measured. This information would then be useful in constrain-

ing earth rheology and structure models.

For all of the above goals to be realized three factors

are essential: accurate observations, accurate models and

appropriate statistics to account for any inadequacy in the

models. In this thesis we will concentrate on the first of

these factors. We commence in Chapter 2 with a detailed

review of the VLBI observables. The fundamental observable of

VLBI is the phase of the cross spectrum of the data recorded

at two sites. However, this observable is not readily used

because in general we have no way of determining the integral

number of cycles, or ambiguities, associated with the phase

observation. The bandwidth-synthesis technique overcomes this

problem by using the group delay, i.e. the derivative of the

phase with respect to (angular) frequency. We will investi-

gate the nature of these observables and in particular

consider the quantities which affect the phase observable and

hence, in general, the group delay. Also in Chapter 2 we will

discuss the phase-calibration system. We will associate this



particular calibration with the observations themselves

because, when available, it is automatically applied during

the processing of the recorded data. The term observation has

now implicitly come to mean "phase-calibrated observation."

In Chapter 3 we will consider methods of assessing the

accuracy of the VLBI observations. Specifically, we will

consider closure of observations around triplets of baselines,

analysis of the behavior of the residual phase in each fre-

quency channel and the behavior of the phase-calibration

system.

A major advance in eliminating the random error and

minimizing some of systematic errors in VLBI observations

would be achieved by eliminating the phase-delay ambiguities.

With current Mark III observations from two widely separated

frequencies, the group delays should be sufficiently accurate

to allow this elimination (observations made at two widely

seperated frequencies allow the plasma delays to be estim-

ated). This problem is dealt with in Chapter 4. In many

respects, the investigations of phase-delay ambiguity estima--

tion can be considered as accuracy checking. We start by

evaluating the approximations made in using dual-frequency

data to calibrate for the delay through the ionosphere. We

then investigate how these formulas should be applied to VLBI C_

data. To check the algorithms used to remove ambiguities, we

have applied them to data taken on pairs of sources which were

observed repeatedly over many hours. With such closely spaced

observations we are able to "phase connect" the data without

• . .. . ... , . , , • m ° , ° o , o - -, , ," .° ,', o o -' °', i - " - • " " °' ' ' -
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use of the group delay. We are then able to compare these

connected phase delays with the predicted ambiguities based on

the group delays.

The studies of phase-delay ambiguity prediction have

produced a technique which can be used to check the accuracy

of the VLBI group delay measurements. We then investigate in

"" Sections 4.3 and 4.4 the accuracy of the group delay measure-

ments from both the phase connected experiments and a geodetic

schedule (i.e., a sequence of observations which are used to

*determine estimates of geodetic parameters).

In Chapter 5, we will summarize the estimates of baseline

lengths obtained from VLBI experiments spanning the interval

from May 1978 to June 1983. In addition, we will also present

estimates of the Love numbers h and I and the tidal lag angle.

The weight of this thesis may imply that all aspects of

radio interferometry are addressed in this volume. This

thesis, however, will address only topics which are applicable

to geodetic uses of wideband, very-long-baseline interfero-

metric observations of extragalatic radio soucres.

Many of the questions which VLBI measurements will be

able to answer are related to geophysics. Consequently, this

thesis will not only be directed towards experts in VLBI, but

also towards the potential users of the measurements obtained

with VLBI -- earth scientists. Users of the system must be

aware not only of the system's advantages but also the

system's disadvantages and limitations. This need is most

evident in the interpretation of the uncertainty of, and the

w



-13-

correlation between, results. It is critical that VLBI users

(actually users of all advanced geodetic techniques) be aware

of underlying assumptions used in data acquisition and proces-

sing, especially when these assumptions may introduce correla-

tions between results or unrealistically small uncertainties.

Throughout the thesis a conscious effort will be made to make

all asumptions and their consequences explicit. In this way

it is hoped that the full capability and limitations of the

Mark III VBLI system can be understood by all readers.

,

,-o

V.

I-.

S. -:'
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2. THE VLBI OBSERVABLES

VLBI measurements can be used to obtain accurate esti-

mates of geodetic parameters, e.g. the relative positions of

radio telescopes and radio sources and the location of the

" earth's rotation axis with respect to the crust of the earth

and the source coordinate frame. Analysis of changes in these

geodetic parameters over a period of time could be used to

answer questions about the dynamics of the earth's crust and

the properties of the earth's interior. However, the esti-

mates of the geodetic parameters are themselves the end result

of a process which contains many steps. In this chapter we

investigate the first step of this process - the inference of

the values of the VLBI observables. For the geodetic applic-

ations of VLBI these observables consist of group delay, phase

delay and phase delay rate. Although these quantities will be

referred to as the VLBI observables, the measurements made

during an experiment consist of recordings of radio signals

from extragalatic radio sources. These recordings, which not.

only contain signals from the radio source but also noise from

the radio receiver and the regions surrounding each antenna,

are not used directly to estimate geodetic parameters, but
they do contain information which is used for this purpose in

a later stage of the analysis.

The information we can use is the difference in the

arrival times of the signals from the radio source at two

sites. We would expect that the time of arrival of the

.°-'* , o % * . . . . . . . . *.*..* . . . . . . .
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signals from the radio source would be a function of the

location of the radio telescopes with respect to the radio

source (Figure 2.1). When two radio telescopes observe the

same source we should be able to compare the recordings from

the two sites and deduce the difference in arrival times of

the signals at the two telescopes. In addition, since the

* radio telescopes are located on a rotating earth, we should be

*able to measure the rate of change of the arrival times. This

latter quantity is the phase delay rate. But how do we obtain

optimum estimates of these quantities from the data recorded

at each telecope? To answer this question we will need to

know the nature of the signals being received from the radio

*source and the nature of any noise sources. We will study

this problem in Section 2.1. In Section 2.2 we will investi-

gate the methods used to infer the values of the VLBI

observables from the recordings at each radio telescope, and

in Section 2.3 we will investigate the phase calibration

system which is used to calibrate the propagation delay

through the receiver system of the radio telescope.

2.1 The properties of the signals recorded during a VLBI

observation

In this section we will investigate two types of radio

emission which are encountered in geodetic VLBI observations

of extragalatic radio sources. These two types are thermal

emission and electron synchrotron emission. The thermal
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emissions are generally associated with noise sources, e.g.

receiver noise, cable losses and atmospheric emission, whereas

the synchrotron emission is the dominant emission process

occurring in the radio sources (generally quasars) which are

observed. In studying these mechanisms we will mainly be

interested in two of their properties -- the statistical prop-

erties of the electromagnetic field components of the emission

and the power spectral density of the emission. The power

spectral density is of interest to us because its Fourier

transform, when normalized, will be the autocorrelation

function of the signals in the time domain.

Thermal emissions in all bodies are due to changes in the

quantum states at random times. If the body is a perfect

absorber (and hence a perfect radiator), it is referred to as

a blackbody and the brightness of the radiation from the body,

Br , at a given frequency is a function only of the temperature

of the body (See Table 2.1.1 for definitions of brightness

and other quantities, as given by Krauss (1966)). This

relationship is described by Planck's radiation law

3
Br=2hf 1Br = hf/kT-I

-34where h is Planck's constant (6.63xi0-  Joule sec), f is

8 -1frequency (Hz), c is the velocity of light (a 3x10 m sec - ),

k is Boltzmann's constant (=1.38xi0 2 3 Joule K- ), and T is

the temperature of the body (K).

This type of radiation characterizes many of the noise

Ab
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Table 2.1.1 Definitions of Radio Source Properties

Brightness Br (w/m -Hz-rad ) Power received per unit

area per unit solid angle

per unit bandwidth

Power dW = Br cose do dA dv (w) power received in bandwidth

dv from solid angle do

incident on area dA with

angle e between normal to

surface and direction to

emission

Spectral power dw = Br cosO do dA power per unit bandwidth

(w/Hz)

Flux density F = ff Br(O, ) do flux density of source
source

(w/m 2-Hz) = (1026 Janskys)

Power pattern P response of an antenna to

(dimensionless) power from direction e,o
normalized to I at P n(0,0)

Observed flux density Fo = ff Br(6,%) Pn(0O) do
source

(if source is small and Pn(0,O) a 1, then Fo  B r 0s where

Os is the angular extent of the source)

Poynting vector P = (XRH) power flow through unit
2(ws/m ) (MKSA units) area

Electric field strength v/m

Magnetic field strength H a/m

For time harmonic fields P(w) = E(w)xH (w)

P(w) = 2F if E and H are interpreted as d/ r

field densities

Rayleigh-Jean's Law (for f<<kT/h and

black body radiation)

Br 2kT/ 2 I
*r

6d
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sources encountered in radio astronomy. Since we are gener-

ally interested in determining if a signal is greater than the

noise level, it has become common practice to associate emis-

sions of all types with an equivalent blackbody temperature.

However, this temperature can only be associated accurately

with a physical temperature for blackbodies.

We can deduce some statistical properties of this type of

radiation based only on the nature of the emission process.

Because the radiation is due to the sum of the emissions from

individual electrons which are changing quantum states at

random times we would expect the components of the electric

field (E field) to be random. In addition, since the compo-

nent of the E field, at a given frequency, will be the sum of

the emissions from many individual electrons changing state,

we can use the central limit theorem of probability to deduce

that these components will be Gaussianly distributed. (Since

the E field probability distribution is probably different for

each state change we need to use the relaxed version of the

central limit theorem which does not require identical proba-

.-bility distributions. This substitution is valid since no

single electron's emission contributes nearly all of the total

energy radiated.) Since the spectrum of the emissions has

* components at high frequency (see Planck's radiation law), we

-* also know that the signals will have a very short correlation

*. time.

Electron synchrotron radiation is the other major emis-

sion process we will consider. Any accelerating free electron
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will emit electromagnetic radiation. Any free electron moving

in a uniform magnetic field will travel in a helical path

(neglecting collisions between the electron and other atomic

- particles) . If the electron's velocity is much less than the

speed of light, the radiation pattern of the emission will

extend over a large angular range perpendicular to the

acceleration vector of the electron (Figure 2.1.1a). When the

velocity of the electron is near that of the speed of light,j

the radiation from the electron, as seen from the frame of the

* observer, will appear to "beam", i.e. radiate in a very narrow

cone in the instantaneous direction of motion of the electron

* (Figure 2.1.1b). We now investigate the nature of this type

of emission.

If the observer is in the plane of the motion of the

- electron, he or she will observe a short pulse of radiation

each orbit of the electron. In Ta~ble 2.1.2 some of the major

formulas associated with synchrotron radiation are given

(compiled from Jackson 1975, Chapter 14). Since the emission

from the electron is periodic (assuming negligible energy loss

and hence ensuring that each pulse is nearly identical) , the

power spectrum of the emission will only have components at

discrete frequencies, i.e. the emission will not have a con-

tinuous power spectrum. The frequency spacing in the spectrum

will be the inverse of the orbital period of the electron.

For the case given in Table 2.1.2, the frequency spacing will

*be approximately l.4x10-5 Hz. From the duration of the vulse

we can also calculate approximately the frequency component in
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Figure 2.1.1 Radiation patterns from accelerating electrons

in a uniform magnetic field

B a. Radiation pattern when v<<c

electro, -D7

observer

b. Radiation pattern when v~c
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Table 2.1.2 Synchrotron radiation equations (MKS units)

For an electron with rest mass m0 moving at velocity v in the

region of a uniform magnetic field Tm we have (see Figure 2.1.1):
2 m2

Energy of electron M = m0 c y

where y-2 =1 -v2 /c2 , c = velocity of light

Radius of orbit p = m cy/(eB m ) , e= charge of electron,

Beam width 8 = 1/(2y)

Pulse duration tp = m /(2eBmy

Energy radiated/(rad/sec)-unit solid angle

e e2c ly 2 1+ P2 12 F2( ~ 2 2~ K2
1 i~ [c [ ' JK 2/3 ")+272 1/ 0

where e is the charge of an electron, w is frequency (rad/sec),

is the angle between the observer and the direction of the

instantaneous velocity of the source, K2 /3 and KI/ 3 are Airy

functions and

= 1 + 2 3/ 2

3c 2

For w << l/t p

Ijp=0 = e 2 c [._] 2/3 [r(2/3) 2 (3/4)1/3

13-6 -48 2Example For 0 = 01 3eV=l.6xl0 J, B = 10 - Gauss=10-Wb/m
-19 31 m 8e = 1.6x10 Coul., m O = 9.lxlO kg, c= 3x10 m/sec,

9 25 9d = 109ly (10 m) and w = 50x10 rad/sec, we have
l.51 7  = 31 2  -8

y = 1.95xi07, p = 3.33xi2 m, 8 = 2.56xi0 -  rad (5.3 mas),

t = 7.5xi0 1 8 sec, orbit period = 7.OxlO sec

I10=0 = 8.8xi0 - 21 Joule/(rad/sec)-rad 
2

Average power radiated each orbit = 7.2xi0 - 24 w/Hz-rad 2 .

109 light years from the source the flux density from this

single electron would be dF = 7.2xi0 - 7 5 w/m2-Hz and hence the

number of electrons necessary to produce a 1 Jansky

(10- 2 6 w/m2-Hz) source is 1.4x10 4 7 .

." ?. .''.; " *. ,"* -..' "."-"" ..-. '. -'., ''- ". . ". . ..' " .*- --. *- _- a--'-,, . - "-.- . -,*"..* ". " :
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the spectrum with the maximum power. This frequency for an

electron with an energy of 10 13 ev is l.3x10 17 Hz; see Table

2.1.2. (We have taken a maximum value for the energy of an

electron in a quasar to ensure that the calculated number of

electrons is a minimum so that we will be sure that the

application of the central limit therom will always be valid

(see discussion later in this section).)

In Table 2.1.2 we calculate the number of electrons

needed to produce a radio source with a flux density of a 1

*Jy, 10O9 light years from the observer (a typical distance for

*quasars) . The estimated 1.4x104 electrons is certainly an

underestimate because we assumed all electrons were beaming

directly at the observer and no account was made for absorp-

tion or scattering of the radiation as it propagated from the

source to the receiver. Since the emission from at least

47
l.4x10 electrons sum together to yield the total radiated

emission, we may use the central limit theorem to deduce that

the spectral components of the radiation will be Gaussianly

distributed provided the emissions from the electrons (or at

* least groups of electrons) are independent. Since a uniform

* magnetic field is necessary to produce the helical orbits of

* the electrons we may expect that this field could cause some

* dependence of the emissions from different electrons.

However, two properties of the emission from quasars would

* suggest that the emissions from the electrons are not strongly

correlated. Firstly, the emission from a single electron is

linearly polarized if the electron is moving in a plane
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circular orbit, but emission from most quasars shows only a

small amount of linear polarization (see, e.g., Haves, 1975;

Altschuler and Wardle, 1977; Conway et al., 1977;

Simard-Normandin et al., 1981; Simard-Normandin et al.,1982)

indicating that the magnetic fields in the emission region are

not uniform or that the radiation has been depolarized as it

V propagated from the source to the earth, e.g. by scattering.

Secondly, if all the emissions were strongly correlated then

it would be highly unlikely that the earth would fall within

the beam of the emission and we would probably not be able to

see any quasars unless the actual number of quasars were very

* large.

From the simplified consideration of synchrotron radi-

ation we have learned two important properties of synchrotron

* radiation: 1) The components of the the Fourier transform of

the signals from the quasar (i.e., components of the spectrum)

are Gaussianly distributed and 2) the power spectrum of the

* emission from quasars is effectively continuous and extends to

high frequency. (While the radiated power from individual

electrons occurs at discrete frequencies, the power spectrum

of the sum of the emissions from many electrons with different

energies will fill nearly all of the frequencies in the power

* spectrum.)

The signals emitted from the radio sources are not

* directly used to infer the values of the VEJBI observables.

* The recordings of these signals are used. The signals from a

quasar will propagate along separate paths to each radio



telescope observing the source. The propagation medium along

each of these paths will, in general, have different proper-

ties. For each path there will be possibly different propaga-

tion velocities and different absorption characteristics, i.e.j

there will be losses from the high and low frequency compon-

ents of the spectra of the signals by the time the signals

reach the radio telescopes.

The signals will, however, undergo most changes as they

propagate through the receiving electronics at the radio

telescopes. In Figure 2.1.2 we show a schematic diagram of a

* VLBI radio receiver and recorder equipm~ent. Along with the

diagram of the receiver we also show schematically the power

spectrum of the signal at a number of locations in the

receiver.

The first major change to the signal's spectrum occurs as

the signal propagates through the feed horns which are design-

ed to receive a relatively narrow range of frequencies (usual-

* ly several hundred MHz). For Mark III geodetic VLBI experi-

ments there are generally two feed horns, one for X-band (=8.

GHz) and another for S-band (=2 GHz). There will be losses in

K the power of the spectral components with frequencies falling

outside the operating range of the feed horns. Also there

will be dispersive propagation delays introduced to the signal

(dispersive is used here to indicate that the derivative of

the phase with respect to frequency is not independent of

frequency). We will investigate the dispersive delays through

0' the feed horns in Section 3.1.
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* .Figure 2.1.2 Schematic diagram of a radio telescope receiver for VLBI
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After passing through the feed horn the signals propagate

along a waveguide towards the first amplifier. Shortly after

entering the waveguide a companion signal is added to the

signal received by the antenna. This companion signal is a

series of low power pulses, each of less than 50 psec duration

and spaced at 1 Psec intervals. These pulses allow the delays

through the receiver system to be calibrated. Their operation

will be discussed in detail in Section 2.3.

The signal and the phase calibration pulses undergo

extensive modification as they propagate through the receiver.

Shortly after the injection of the phase calibration pulses

the signals are amplified. The amplified signals are high

pass filtered and then multiplied by a high frequency signal

(8.08 GHz for X-band and 2.02 GHz for S-band). These

frequencies are referred to as the first local oscillator (LO)

frequencies. The high pass filter is such that all signals

with frequencies less than that of the first LO are removed.

This multiplication or heterodyning of the signal will shift

its spectrum. (Heterodyning is also often referred to as

mixing.) If we denote the original spectrum by 9(w) then the

heterodyned signal will have a spectrum given by (Bracewell,

1978, p.108 - modulation theorem)

Sm( = (W+Wr) e+i r + §(w-w e-ir

where wr and *r are the frequency and phase of the local-

oscillator signal, and Sm (w) is the spectrum of the signal

after mixing. We have dropped the factors of one half which
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would normally appear in this equation because of the ampli-

fication of the signal which accompanies the mixing operation.

This signal is band pass filtered to remove the frequency

components near 16 GHz for X-band and near 4 GHz for S-band.

This intermediate frequency (IF) signal is now amplified and

sent via coaxial cable to the IF distributor. The signals we

wish to observe are now in the frequency ranges of 100-550 MHz

for X-band and 200-550 MHz for S-band (see Figure 2.1.2).

The IF distributor, as its name implies, separates the IF

signals into 28 separate channels which are input to 28 video

converters. These video converters will mix a frequency

(different for each video converter) between 100-550 MHz with

the IF signal. This operation will shift the spectrum of the

signal into the range 0-2 MHz. Each video converter will

shift a different part of the spectrum into this range. The

mixers in the video converters are single sideband mixers and

will output two channels, one for the upper sideband and the

other for the lower sideband. The output from either or both

channels may be recorded on magnetic tape. (If both upper and

lower sideband signals are recorded, they are recorded on

separate tracks on the tape. When signals from both sidebands

are recorded the total number of widely spaced frequency

channels which can be sampled is reduced by one half from the

number which could be sampled if only one (single) sideband

were recorded. The advantages of recording both sidebands

will be discussed in Appendix B.)

In Figure 2.1.3 the effects of the mixing of the signal

-".
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Figure 2.1.3 Schematic representation of the effects of mixing
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are shown graphically. (While examining this figure it is

important to remember that, in general, spectra contain both

positive and negative frequencies. For real signals (complex

sense), the negative frequencies must be present to ensure

that the imaginary parts of the Fourier integral will be

zero.) From the figure it can be seen that components of the

spectrum from above and below the LO frequency will add

together when the signal is mixed with only a cosine signal.

(This mode of mixing is referred to as double sideband

mixing.) To avoid this overlap of upper and lower sidebands a

single sideband mixer is used. This overlap of sidebands does

not occur in the first mixing operation (which only mixed a

cosine signal) because the signals with frequencies less than

that of the first LO are removed (by filtering) before mixing.

With a single sideband mixer, the signal is split into two

channels, and a sine is mixed with one and a cosine wave with

the other. The sine channel (i.e., the channel mixed with the

sine wave), after mixing, is rotated by -900 of phase and

added to the cosine channel. Their sum will contain only the.

frequency components from above the LO frequency (Rogers,

1971). This sum is referred to as upper sideband (USB). If

0
the 90 rotation is applied to the cosine channel, the sum

will contain only frequency components from below the LO

frequency. This sum is the lower sideband (LSB).

When single sideband mixers are used in the video con-

verters, the output signal of the mixers for upper sideband

S
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will be related to the input IF signal by
U

and
SUlwv) = S m(wv - i) e i1  ;i v

W v (W v- ) e - I  if W < 0,

where S (WV) is the spectrum at video frequencies (i.e, the
u

video spectrum), and w, and are the frequency and phase of

the local oscillator in the video converter. We may combine

the effects of the two local oscillators into a single expres-

sion. For upper sideband the relationship between the RF

spectrum and the video spectrum will be

§u iu
su(WA) = S(v+ Wi) e 1*1 ; if Wv> 0 (2.1.l.a)

and SU(wv) =S(wv- (AI) e-i1u-u (v (v le-if W < 0, (2.1.1.b)

where wI W r+WI and 01 = r +  For the lower sideband, the

relationship between the RF spectrum and the video spectrum

will be

l ~ 1 1if Wv> 0 (2.1.2.a)(W V) = (Wv- W 1 )  e-iv

and

= 1 W) e I if Wv< 0, (2.1.2.b)

where = r+ is the lower sideband phase shift. ideally

will equal sU but this equality may not always hold (see

Appendix B).

Before the video signals are recorded, they are hard-

limited or clipped. The clipping is achieved by amplifying

the signal to the saturation point of the amplifier, i.e. the

output of the amplifier is plus or minus its saturation

II

~ :~
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voltage. This amplified signal is then uniformly sampled at

the Nyquist rate for a 2 MHz bandwidth signal. The output of

the clipper is either plus or minus one depending on whether

or not the input voltage was positive or negative. In this

mode a single bit on the tape can be used to represent the

data sample.

Up until the clipping of the signal the operation of the

receiver has only rotated, shifted in frequency, and added

noise spectra to the spectrum of the signal from the radio

source. The clipping operation will however change the shape

of the spectrum of the signal and noise. These changes in the

spectra will change the correlation function of the signals.

The changes in the correlation function of a signal which has

been clipped have been previously studied (Van Vleck and

Middleton, 1966; Whitney, 1974). For a stationary process,

the autocorrelation function, Ac (T), of a clipped signal will

be given by
-i

A U() = (2/n) sin A(,r)

where A(T) is the autocorrelation function of the original

signal, and T is the lag introduced for correlation.

The signal plus noise which is recorded on magnetic tape

is bandlimited to the frequency range of 0-2 MHz (the actual

recorded signals do not cut off instantaneously at 2 MHz nor

do they have a zero frequency component; this DC component is

filtered out before recording). The spectral components of

the signals in this 0-2 MHz range are the same components that

occurred in the spectrum of the signals from the radio source

0 N
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in the range 0-2 MHz around their radio frequency (RF), (they

have however been amplified) with added noise which also came

predominantly came from 0-2 MHz band around the RF. The major

noise source is the first amplifier in the receiver chain.

Over the 2 MHz range at RF the signal and noise power have

constant amplitude and hence the video signals will also have

a constant power spectrum. A signal whose power spectrum is

constant in the range 0-2 MHz will have an autocorrelation

which is given by sin(2nB')/(2nBT), where B is the bandwidth

(2 MHz in our case). The autocorrelation function of the

clipped signal will therefore be

Ac(-) = (2/t) sin' fsin(2nBT)/(2nBT)1

If the clipped signal is sampled at the Nyquist rate (1/2B

time interval between samples), we see that Ac (n/2B) is zero

for all integral n and hence that the samples of the clipped

signal will be uncorrelated.

2.2 Cross spectrum phase and its relationship to group delay,

phase delay and phase delay rate.

Yn Section 2.1 we examined the signals which are recorded

on magnetic tape at each radio telescope during a VLBI obser-

vation. In this section we will investigate the method used

to extract the values of the VLBI observables from these

recordings. The recorded data consist of three components:

the signals from the radio source (which will be present on

the recordings at each site); the noise, mainly from the

~~~~~~~. . .... ....... . . . • ....... . .. ,..,,..,, , '",.-,,
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receivers at each site; and the pulses generated by the phase

calibration system. The statistical properties of the record-

ed data were discussed in Section 2.1. The spectral compo-

nents of both the radio source signal and the receiver noise

should be Gaussianly distributed. For the radio sources

observed in geodetic VLBI experiments, the power spectrum of

the signals over the 2 MHz recorded bandwidth will be constant

(except at the edges of the band where it rapidly, but not

instantaneously, decreases). The power spectrum of the noise

should also be constant over the 2 MHz recorded bandwidth.

If we were to cross correlate the tape recordings from

each site, we would expect that the signals from the radio

source would correlate and cause a peak in the correlation

function at a lag between the tapes corresponding to the

difference in the arrival times of the signals (provided the

integrated signal strength is sufficently greater than the

noise that this peak can be distinguished from the noise).

(For the moment we will neglect the additional complication

that the Earth is rotating and hence that the delay is not

constant.) This attribute could be used to estimate the

difference in arrival times of the signals from the radio

source. An alternative technique for estimating the delay

would be to find the cross spectrum of the data recorded at

each site and use the phase of the cross spectrum to estimate

the delay: the phase of the cross spectrum divided by the

angular frequency will be the delay.

There would appear to be a difference in information

"0.
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content between these two estimates. If all the data are

cross correlated, then only a single estimate of the delay is

obtained. On the other hand, if the cross spectrum approach

is used, then an estimate of the delay is obtained for each

frequency at which the cross spectrum is computed. The reason

for this apparent difference in information content is that we

have been discussing two different types of delay. When the

data are cross correlated and the delay determined by maxi-

mizing the cross correlation function we are measuring the

difference in arrival time of packages of energy from the

source (see, e.g., Jackson, 1975, pp 209-303). These packages

of energy will propagate at a group velocity and the measured

difference in arrival times will be a difference in group

delays. When the cross spectrum approach is used, we are

decomposing the energy packets into their individual

"monochromatic" waves. These waves will propagate at their

respective phase velocities. At each frequency the phase of

the cross spectrum is a measure of the phase delay at that

*frequency. However, the phase can only be measured modulo 2%.

radians and hence from the cross spectrum we do not obtain

unique estimates of the phase delays.

The apparent difference in information content of the two

techniques can be resolved by noting that the group delay is

the derivative of the phase with respect to angular frequency.

Hence, the group delay which is obtained from cross correl-

ating data, can be obtained from the cross spectrum results by

determining the derivative of the phase of the cross spectrum

%
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with respect to angular frequency. This derivative will be

- the group delay.

In practice the use of either of the techniques discussed

above is complicated by the rotation of the earth and hence by

- the delay changing with time. To overcome this problem we

could cross correlate the data from two tapes while running

* the tapes at different speeds however with digital recordings

this procedure would be very difficult to implement. With the

cross spectrum technique, the spectra of the data recorded at

each site will be Doppler shifted if the stations are moving

with respect to the source and hence the phase of the cross

spectrum computed by Fourier transforming the data changes its

* meaning. If the Doppler shifts of the signals are known then

* the spectra of the data from each site can be corrected and a

* more useful cross spectrum constructed.

A method for overcoming the problems associated with the

* * rotation of the earth and for determining the maximum likeli-

- hood estimates of the group delay, phase delay and phase delay

rate when the delay is a function of time was developed by

Rogers (1970). Rogers constructed a function, called the

delay resolution function, which depended upon the cross

* .spectral components of the recorded data determined from short

segments of data and trial values of the phase delay, group

delay, and the phase delay rate. The values of these latter

two quanities which maximize the value of this function can be

shown to be the maximum likelihood estimates of the VLBI

* observables (see Appendix A).

0
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To overcome the problem associated with the rotation of

the earth, we can segment the recorded data from each channel

into short intervals (e.g., intervals of 4 psec duration) and

compute the cross spectra of these 4 psec segments of data

(sixteen data samples from each channel are used to determine

the cross spectrum for that channel). Only 8 complex compo-

nents of the cross spectrum are determined from the 4 psec

sp.an of data (i.e., the cross spectrum is computed at eight

equally spaced frequencies spanning the 2 MHz recorded band-

width). Over such a 4 psec interval, the change in phase of

the cross spectrum due to the rotation of the earth will be

small, and the computed cross-spectral components will approx-

imate the cross spectrum which would have been obtained had

the two sites been moving with equal velocity (see Appendix A

for details). The cross-spectral components from all of the 4

psec data segments, from all of the channels, could then be

used in the delay resolution function to estimate the values

of the VLBI observables. (This technique of using 4 psec

segments of data is not the actual technique used by the Mark.

III correlator, but it will provide us with a method for study

of the actual techniques used; see Appendix B for more

details.)

In Appendix A we review the development of the delay

resolution function and show that when the statistical proper-

ties of the signal and noise are independent of time and

frequency, the maximization of the delay resolution function

is the maximum likelihood estimator of the VLBI observables

.- w
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and is equivalent to a least squares estimator. The data

which would be used in the least squares estimator are the

phases of the cross-spectral components computed at 7 frequen-

cies from each 4 isec data segment or from coherent averages

of these cross-spectral phases from many 4 isec data segments

(see Equation (A.16)).

The delay resolution function D(ig, ) is given by
g p

Equation (A.10) (see Appendix A for details):

BT
D( g i) - E X exp[-i(w.-W P)f -iWj At.]g p BT j=l jX2j 3 o g p

where XljX2j are the components of the cross spectrum, at

frequency wj, of the data recorded at each site at time Atj

relative to the center of the observation (At. refers to the

epoch of the center of the short segment of data used to

determine the cross spectrum), 1g and 'p are trial values of
9 p

the group delay and phase delay rate which are varied until

the magnitude of D(T ,' p) is maximized. The phase ofAg p

D(i , p), where 1 and Ic are the values of T and tc whichgpg p g p

maximize the magnitude of the delay resolution function, is

the estimate of the visibility phase referred to the frequency

%o (The visiblity phase is an estimate of the cross-spectral

phase at wo; see Appendix A for more detailed discussion.)

The input for the delay resolution is not the lata

recorded during the observation, but rather the components of

the cross spectrum of the recorded data. We have discussed

one method for obtaining these components: by cross correlat-

ing short segments of data and finding the Fourier transform
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of the cross correlation functions from each data segment. in

Appendix B we investigate the methods used by the Mark III

correlator to generate the cross-spectral components from the

recorded heterodyned signals.

The actual implementation of maximizing the delay resolu-

tion function is not as straightforward as the above equation

(Equation A.10) implies. (The material discussed here is

treated extensively in Appendix B; in the following discussion

we will try to highlight the major points from this appendix.)

The summation given in Equation (A.10) is two summations, one

over time and the other over frequency. In the implementation

of Equation (A.10) these summations are treated separately.

The cross-spectral components within each frequency channel

are coherently averaged over a period of time referred to as

an accumulation period (usually -2 sec) . The coherent average

corresponds to initially carrying out the time summation in

sections, each of a sufficiently short duration that the a

priori phase-delay rate can be used in the summation rather

than the trial values of the phase-delay rate. The trial

values of the phase-delay rate are used to sum the coherent

averages. The frequency summation is also separated into two

parts (but for reasons different from those for separating thej

time summation) . The frequencies of the cross-spectral compo-

nents are clustered in groups in each 2 MHz bandwidth channel,

with the groups separated from one another by several tens to

several hundreds of megaHertz. The group delay will be more

precisely estimated the using the cross-spectral phases from
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widely spaced frequencies. Hence, two group delays are

estimated -- a "multiband" group delay, which is estimated

from the slope of the "video DC" phases from the widely spaced

2 MHz channels and a "single band" group delay which is esti-

mated from the average of the slopes of the cross-spectral

phases for the individual 2 MHz channels. (The "video DC"

phases are the estimates of the cross spectral phase at wv=0

(video DC), which would be obtained from least-squares

estimates of a slope and an intercept (at wv=0), from the

cross-spectral phases at 14 or 7 discrete video frequencies

(depending upon whether dual or single-sideband data were

recorded, respectively.) The slope is the singleband delay,

and the intercept is the video DC phase; see Section B.2, for

more details.) The singleband group delay estimate is much

less precise then the multiband group delay estimate.

Thus, there are three quanities for which the delay

resolution function is maximized: the multiband group, the

singleband group delay and the phase delay rate. The estimate

of the visibility phase is the phase of the delay resolution

function after the estimates of the above three quantities are

substiuted.

The estimate of the multiband group delay is, in general,

not unique. The frequency spacings of the widely separated

channels are chosen to be multiples of the minimum frequency

spacing (this type of frequency spacing ensures low "sidelobe"

levels in the delay resolution function) and hence it is

possible to find equally good representations of the observed

0 .
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(video DC) phases by shifting the group delay by 2%/Awm3n sec,
min

where Awmin is the minimum (angular) frequency spacing. This

change in the group delay, called the group-delay ambiguity,

will change the estimates of the video DC phases of all of the

(widely spaced) frequency channels, by exact multiples of 2n

radians. Hence, the difference between the observed video DC

phases and the estimates of their values calculated from the

group delay, visibility phase and phase-delay rate will be F_

unaffected. (Remember that we have no way, other than from a

priori information, of knowing which multiple of 21 radians

the phases in each channel should be located on; see Appendix

A for more details.)

The signals received at each site may be recorded in one

of two ways. In geodetic Mark Ill experiments, before June 24,

1981, the signals were recorded with dual sidebands, i.e.,

both the upper and the lower sidebands were recorded. This

recording technique offers the advantage that some of the

systematic errors which are introduced by the approximations

made in the correlator algorithms, cancel with this mode of "

recording (see Appendix B for details). The disadvantage of

this recording mode is that each channel requires a pair of

tape tracks, limiting the maximum number of frequency channels

which can be recorded in Mode B to seven. (Mode B is a

recording mode for which 14 tracks on the tape are recorded

during the forward motion of the tape and the other fourteen

are recorded in the reverse motion of the tape (Rogers et al.,

1983)). When only single sideband data are recorded (i.e.,

. -.

I i- ".;-." "';,: """.. . . . . . . . . . . . . . . . . . . . . . . . . . .."'. .."-",-".". .-. .". .."-. .'-. ... .-, ,- .- , - .-,"- ".. .- .. -. --- '



-42-

when only one output from each video converter is sent to the

tape recorder), 14 frequency channels can be recorded (in Mode

B). These additional frequency channels can be used to reduce

the sidelobe levels in the delay resolution function (see

Whitney, 1974, and Robertson and Cater, 1983, for diagrams of

the delay resolution function).

When the algorithms which are used to generate the cross-

spectral components were derived in Appendix B, several

approximations were made. The effects of these approximations

are also studied in this appendix. We found that when the

-9phase delay rate is greater than 10 sec/sec, the biases

introduced into the visibility phase should be less than 100,

when only single sideband data are used. (The phase-delay

rate will exceed 10-9 sec/sec most of the time on baselines

greater than 10 km long if w 02.3 GHz.) When upper and lower

sideband data are used, in equal proportions, the visibility

phase errors should be zero. Only one approximation (accumu-

lating the cross correlation function with an erroneous

phase-delay rate) was found which could affect the multiband

group delay. Even in the extreme situation studied the error

in the multiband delay was only 20 psec (=0.7 cm) at X-band.

In general, we would expect this approximation to introduce

errors in the multiband group delay of less than one pico-

second (&0.3 mm).

There are of course many more components in the Mark III
system which could affect the VLBI measurements. it is beyond

the scope of this thesis to investigate all of the possible

0
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interactions between these components and the VLBI measure-

ments. In Chapter 3 where we investigate the quality of the

VLBI measurements, we will discuss some of those errors due to

equipment limitations rather than to the approximations made

in applying the estimation procedures.

Before finishing our discussion of the VLBI observables

we need to discuss one final aspect of the measurement tech-

niqtie -- the phase-calibration system.

2.3 The phase-calibration system

In Section 2.1 we discussed the system components which

operate on the signal from the radio source as the signal

propagates through the receiver to the tape recording. These

components (waveguides, mixers, amplifiers, cables, filters)

will greatly affect the phase of the signal, e.g., 1.5 m of

waveguide, with a cutoff wavelength of 5.7 cm, will have a

phase delay of 3.9 nsec at 8.3 GHz which corresponds to 32.4

cycles (see Section 3.1). If the propagation properties of

the receiver were time independent, then these delays through

the receiver would pose no serious problem. (The propagation

delays would be constant and could not be differentiated from

the epoch offset of the hydrogen maser.) Unfortunately, the

properties of the components in the receiver are not time

independent. There are two different types of phase vari-

ation which can occur in the receiver. These variations are

changes in the local oscillator phases which will add direct-

. .* . .. . . . . -*,*-. * n

- ~ *~rJ'



-44-

ly to the signal phases (see Equations (2.1.1) and (2.1.2)),

and variations in the propagation delays. Both of these

types of change can be monitored by the phase-calibration

system.

The phase-calibration system consists of pulses which

are injected into the receiver every microsecond (see Figure

2.1.2). In the frequency domain the pulses will form a

"comb" of Dirac delta function "rails" with 1 MHz spacings

between the rails. The pulses are of finite duration (=50

psec) and hence the comb will extend to approximately the

inverse of the pulse duration (=20 GHz), (Rogers, 1980).

In the frequency domain, there will be two phase-cali-

bration rails appearing in each 2 MHz channel. The frequency

boundaries of the channels are set such that these rails will

appear at 10 kHz and at 1010 kHz for upper sideband (USB)

channels. The rails will appear at 990 kHz and 1990 kHz in

the lower sideband (LSB) channel when both sidebands are

being recored. If only LSB is being recorded, the

calibration rails would be located at 10 kHz and 1010 kHz.

The frequency boundaries of each channel are determined by

the sum of the local-oscillator frequencies which are mixed

with signals from the radio source, and the recorded

bandwidth.

The phase-calibration pulses will propagate through the

receiver and their spectral components will undergo the same

phase shifts as the spectral components of the signals from

the radio source at the corresponding frequencies. When the

• ° " . j .' ,- -o- . . - . - - °J °- - • ., ° .° o . , -, O . - - - - . -. -° , o _ . .. ° • • - .o ° °, ° • - ° .. -I
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phase-calibration phases are subracted from the video DC

phases (see Section 2.2), the calibrated phases become refer-

red to the phase of the pulses at injection into the pre-

amplifier of the front end.

The phase of only one of the calibration rails is

extracted during correlation (the rail occurring near zero

frequency (DC) in the video spectrum, i.e. usually 10 kHz).

The major reason for extracting a single calibration phase

concerns the use of dual sideband recordings. We discussed

in Section 2.2, the two types of group delay which are esti-

mated during processing of VLBI data, the multiband and

single band group delays. The extraction of a second cali-

bration phase would predominantly affect the estimation of

the singleband group delay since the second calibration phase

would calibrate phase changes over the 2 MHz recorded band-

width. When the Mark III system was being designed the

recording made was expected to be both upper and lower side-

band so that each channel in the synthesized band would have

effectively a 4 MHz bandwidth with the reference frequency

(i.e., the radio frequency corresponding to Wv=O), for the

* channel in the center of the 4 MHz bandwidth. Because the

* multiband group delay (this is the delay used in geodetic

data processing), is estimated from the phases at the refer-

ence frequency, any error in the derivative of the phase with

respect to frequency across the 4 MHz (USB + LSB) channel

will not affect these phases (because of symmetry) and hence

will not affect the estimates of the multiband group delay

4w
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*[ (see Appendix B for more details). Consequently there was no

need to determine the phase of the second calibration rail.

However, in recent Mark III VLBI experiments (since June 24,

1981) only single sideband recordings have been used. There

were two reasons for the change in recording mode. Firstly,

the assumption of the insensitivity of the phase at the

reference frequency to the derivative of the phase with

respect to frequency across the 4 MHz bandwidth is only valid

if the same weight is given to the data from each sideband.

This (weight) equality was often not satisfied because of

tape reading errors; hence many of the advantages of using

both sidebands were compromised. Secondly, the tape density

upgrade (Hinteregger, 1980; Hinteregger, 1982) was taking

longer than expected and there was a desire for more

frequency channels in the synthesized bandwidth. (The

additional frequency channels were needed to allow a wider

bandwidth to be spanned while having a smaller minimum

frequency spacing (this smaller spacing increases the group-

delay ambiguity; see Appendix A). The additional frequencies

also made the group delays much less sensitive to phase

errors in individual channels (see Section 3.1). With single

sideband recordings, the extraction of a second calibration

phase would reduce errors due to changes in the system delay

(over the 2 MHz recorded bandwidth). A 1 nsec change in the

delay through the system will introduce an error in the phase

of the reference frequency of 0.36. (This number is easily

calculated by noting that the reference frequency is 1 MHz

4 . . _. - . _ .; .. j .. -. . - .. - .. - . - . - .. . . - .. - . .. . - - . . ' , . . . - .
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away from the center of the recorded channel and hence a

change in the delay of ATc will lead to a phase error of

A-cxl MHz; see, also, discussion associated with Figure

B.3.1). In Section 3.1 (Figure 3.1.5), we show evidence

which indicates that such changes may be possible at some

antennas (although the phenomenon shown in Figure 3.1.5 could

be explained by other mechanisms as well). At this time, the

correlator modules would need to be redesigned to allow both

calibration phases to be extracted. When the tape density

upgrade is completed, dual sideband observations should be

adopted again, in order to minimize errors due to system

delay changes.

The extraction of the calibration phases and amplitudes

is carried out in the correlator module before the data

streams are cross correlated. Ideally, to extract the phase-

calibration phase we would multiply each data stream by

coS(w ct) and sin(w ct), where wc is the frequency of the

calibration rail, and then low pass filter the output. The

calibration phase would then be tan (C /C ), where C and C*s c s c
are the correlation coefficents from the sine and cosine

multiplications. The phase calibration amplitude is

calculated from VC +C . This amplitude is usually expressed

in units of 10- 4 of the (on-source) system temperature, and

hence is a function of the power in the calibration pulses

and the system power. The calibration amplitudes are not

normally used, but we will see in Section 3.2 that these

amplitudes can provide a useful diagnostic tool.

-. . . ., - ...-. -. . , , .. , ., . . . . ... . ., . ' ,, . . " " .-. ... "' , . _ . '. , .
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The multiplication by sine and cosine functions is

carried out in the correlator, but the cosine and sine

functions actually used are two-level approximations, i.e.

they are either plus or minus one depending upon the argument

of the function. During a two second accumulation period the

cosine and sine will rotate through 20,000 cycles and the

errors introduced by using the two-level cosine and sine

function will cancel to a very high degree. (The error in

the calibration phase introduced by the use of the two-level

sine/cosine approximation will be =5xlO- 5 rad; see discus-

sions on the three-level sine/cosine function in Appendix B.)

The use of a two-level cosine/sine function is not

without its problems however. The signal-to-noise ratio

(SNR) of the phase determination is lowered by 4/(%V2)=0.90

(this factor is the ratio of the Fourier series coefficient

of the two-level cosine function to the Fourier series coef-

ficient for a pure cosine function divided by the expected

increase in noise level, Y2). This reduction in SNR is not a

serious problem because the effective temperature of the

phase-calibration rails at 10 GHz is = 5x104 K (Mark III

*.Documentation, 1980, p. DC-8) and after a 1 second integra-

tion time the SNR will be 300 if the system temperature is

167 K. (The 5x10 4K temperature of the calibration rail

corresponds to the phase calibration pulse power being 1%

of the total system power in a 2 MHz bandwidth.) With such

large SNRs a reduction of 10% in the SNR is not a serious

problem.

4
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The second, and more serious, disadvantage of using the

two-level sine/cosine function is the harmonics which are

generated by this type of function. Since the two level

* sine/cosine function is periodic, it can be expanded in

Fourier series with the fundamental frequency being the

calibration frequency at video, i.e. 10 kHz. The Fourier

coefficients decay as 1/n, where n is the harmonic number.

These harmonic terms should cause no serious problems unless

there are non-random signals at these frequencies. There

should not be any non-random signals at these frequencies,

except for the 101st harmonic which corresponds to the

frequency of the second phase calibration rail in the 2 MHz

bandwidth. Approximately 1% of the signal in this second

rail will be included in the computation of the calibrationi

* phase. This leakage of the second calibration rail into the

first calibration rail could introduce errors of order 0.6

(0.01 rad) in the estimated calibration phases. These errors

* should be kept in mind as the precision of VLBI observations

improves. At this time there seems to be more serious

4 problems which need solving (see Chapter 3).

The phase-calibration pulses provide a series of time

"ticks" at the injection point, to which the signal arrival

times can be referred, i.e. the calibrated cross-spectral

phases are the phase differences between the spectra of the

signals at the injection points of the pulses, at the two

sites in the interferometer, referred to the phases of the

spectral components of the calibration pulses, again at the
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injection points at the two sites. (See discussion in

Appendix B concerning the singleband delay, Equation

(B.3.3).) Ideally, we would like the signal arrival times

referred to the time "ticks" generated by the hydrogen maser

frequency standard which serves as the master clock at each

site. If the propagation delay through the cable which

carries the 5 MHz signal used to generate the phase-calibra-

tion pulses remains constant, then there would be a constant

offset between the hydrogen maser time ticks and the time

ticks provided by the phase-calibration pulses. The propaga-

tion delay through this cable is, however, a function of

temperature and tension (and possibly other time-dependent

quantities). To ensure that this offset is always known, the

delay through the cable carrying the 5 MHz signal is moni-

tored using a cable-calibration system. The method used to

measure the cable delay relies on reflecting a modulated

version of the 5 MHz signal from the cable/pulse generator

connector back down the cable. (The modulation allows this

reflection to be separated from other possible reflections of.

the 5 MHz signal.) The phase difference between the outgoing

and incoming signals measures the changes in the propagation

S- delay through the cable. Except for clock synchronization

experiments (Clark et al., 1979), there is no need to measure
0

the absolute length of the cable.

Before completing this discussion of the phase calibra-

tion system we should discuss one possible problem with this

system. The phase-calibration system injects pulses into the

• ° . . . . "-' " "." "'' i " " "." - " ". ."" . . . - °. . . . . . ..°'[ [ i? . . . .
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receiver which will be almost identical in shape and spacing

at each site. There should be a very high correlation

between the phase-calibration signals when the recordings

from each site are cross correlated. (The phase-calibration

signals are not pulses on the recordings because the signals

have been heterodyned to video frequencies (see Section

2.1).) The VLBI estimation algorithm relies on the correla-

tion between the signals from the radio source. Will this

additional correlated signal affect the measurements? In

general, there should not be any major effect because of the

difference in fringe rate (i.e., the rate of change of phase;

see also discussions on maximizing the delay resolution

function, Appendix B.3), between the phase calibration pulses

and the signals from the radio source. The correlation

between the phase-calibration pulses will quickly dissipate

as the delay between the tapes is changed and the rotation

corrections are applied during correlation of the tapes. We

should notice that observations with small fringe rates -.ill

be most affected by the correlation between the phase-cali-

bration pulses.

We may calculate the expected magnitude of the contribu-

tion of the calibration pulse's cross correlation by summing

the cross-spectral components of the calibration pulses, i.e.

we may decompose the cross spectra of the recorded signals

into contributions from the signal (from the radio source),

the noise, and the phase-calibration signals. The cross

correlation between the calibration pulses will introduce an



-52-

additional phasor to the signal cross-spectral phasor. As

the cross-spectral components are counter-rotated, to account

for the changing phase of the signal part of the cross

spectrum, this additional phasor (due to calibration pulses)

will also be rotated. However, the phase of the cross-

spectral components due to the calibration signals will be

constant (almost) before the rotation and, hence, after the

rotation, they will no longer align. We may calculate the

expected amplitude of the summed, calibration pulse cross

spectral components, by replacing the summation of these

contributions to the cross spectrum, with an integration (see

Equation (A.15) for a discussion of the coherent sum of the

cross-spectral components). This amplitude, after T seconds

of integration, will be

T
Acal I A0 exp[-iw rapt] dt (2.3.1)

where w r is the (angular) RF of the video channel before

heterodyning, Ao is the amplitude of the calibration phasor

(=l% of the total system power, i.e. Ao =0.01), and rap is

the a priori phase-delay rate. The integration of Equation

(2.3.1) yields

A cal = 2A 0  ( rt apT/2)/(w tap) (2.3.2)

The integration of the signal term over the same interval of
time, assuming that j is close to the actual phase delay

ap
rate (see Appendix B for details) , will be (relative to the

I-

I
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system power)

Asignal 1 TalTa 2 /(TslTs 2) T (2.3.3)

We may now calculate the magnitude of the error in the cross-

spectral phases due to cross correlation of the phase cali-

bration pulses. For an observing frequency of 2.3 GHz,

9
(wr=14.SxlO rad/sec), 1ap=l00 psec/sec (small value even for

baselines less than 1 km), T=100 sec, AO=0.01, and

___ ___ ___ ___ ___ -44TalTa 2 /(TslTs 2 )=10 - , the ratio of the amplitudes of the

integrated calibration phasor to the signal phasor would be

Acal /Asigna =0.014. The phase calibration cross correlation

in this case could lead to phase errors of up to 0.8 (=0.014

rad). This corruption of the signal by the phase-calibration

pulses is a problem for observations on short baselines (<I

km). The problem can be solved by offsetting the phase-

calibration rails at one site. However the current Mark III

correlator cannot process data recorded in this manner.

We have now completed a basic discussion of the VLBI

observables and the techniques used to estimate their values..

The discussion in Appendix A has presented a variety of

methods of visualizing and studying the estimation of the

values of the VLBI observables. We have applied some of

these methods in Appendix B to study some of the limitations

of the methods used to estimate the values of the observ-

ables. We will now investigate other procedures which can be

used to assess the quality of the VLBI measurements.

U



-54-
I

3. The Quality of the Observations

In Chapter 2 we studied the methods used to estimate the

group delay, phase delay and phase-delay rate from signals

recorded at two radio telescopes. In this chapter we will

investigate the quality of these measurements. We have

already seen that the observed values of the group delay,

phase delay and phase delay rate are related to the radio

telescope's position and the radio source's position. In

Chapter 5 we will study in more detail the relationship

between these quantities and the observations. For the moment

the exact relationships are not important. Given such a

relationship, one method of checking the quality of the

observations would be to compare them with estimates of their

values calculated from such a model.

There are, however, some major problems with this

technique of studying observation quality. Firstly, this

technique does not allow the errors in the observations to be

separated from the inadequacies of the models. Secondly,

because the models depend on parameters such as station and

source positions, any observational errors will likely be at

least partially absorbed into the estimates of these

parameters. (Ideally, we would like to check the observation

quality at the subcentimeter level. In order to achieve this

level of uncertainty in the model values we would need to

estimate corrections to the model parameters, based on the

observations themselves.) If the observational errors were

....
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independent and Gaussianly distributed then we could easily

compute the expected reduction in the magnitude of the postfit

residuals (i.e., the differences between the observations and

the estimates of their values from the model, after parameters

have been estimated from the observations), due to some of the

errors in the observations being partially absorbed into the

estimated parameters (see Appendix E). Unfortunately, we are

interested in possible systematic errors in the observations

and the statistical arguments which apply to "random" errors

are likely to be erroneous when applied to systematic errors.

In particular, one question we would like to answer is: what

are the fractions of the systematic errors which are absorbed i
into the estimates of the station and source positions? The

analysis of postfit residuals will never fully answer this

question.

How then are we going to study the quality of the obser-I

vations? A VLBI observation is very redundant and we will use6

this redundancy to study quality. The number of bits recorded

at each radio telescope during a 100 second observation is

9typically 3.2x10 These bits are reduced to three numbers

which are used for geodetic data analysis - the multiband

group delay, phase-delay rate and phase delay (the visibility

phase divided by w ; see Appendix A).

A review of the methods used to achieve this reduction in

information volume will reveal several methods which may be

used to study the quality of the observations. We commence by

studying the behavior of the "residual phases" from each

.~ ~ -
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frequency channel. The residual phases are the differences

between the coherently averaged cross-spectral phases in a

channel and the estimate of the cross-spectral phase for that

channel, calculated from the group delay and the visibility

phase (see discussion associated with Figure 3.1.1). If more

than two channels are used in the synthesized band then we may

use the residual phases to study how well the phases in each

channel are modelled by the group delay and the visibility

phase. We will study the residual phases in Section 3.1.

After examining the residual phases, we will examine, in

0 Section 3.2, the consistency of the phase and cable calibra-

tions. These studies will aid in interpreting the behavior of

the residual phases. Finally, in Section 3.3, we will

investigate the sum of delays around a triplet of baselines as

a measure of quality.

Many of the studies of the quality of the observations

were motivated by early attempts to predict phase-delay ambi-

guities from the group delays. These prediction techniques,

which probably provide one of the most stringent quality

checks of the VLBI observations, will be discussed in detail

in Chapter 4. In the following sections we will attempt to

outline the properties of each of the quality checks. Specif-

ically, we will be most interested in the limitations of each

of the checks, i.e. the nature of errors which a specific

check can or cannot measure. For each type of quality check

* we will give specific examples. We will not, however, be able

to present all of the results thus far obtained. instead, we
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will compile the results of the quality checks and make some

conclusions about the performance and the limitations of

currently available Mark III systems (Section 4.4).

Some checking of the quality of the observations is

carried out before the data analysis stage. The program FRNGE

checks a number of error conditions during correlation, e.g.,

non-detection of the phase calibration signal, loss of time

synchronization while reading the data tapes, and low correla-

tion amplitudes, are some of the checks which are made.

Observations which fail these checks are flagged. These

observations will be shown with lower case letters when data

are plotted.

3.1 Residual phases

In Chapter 2 we investigated the methods used to estimate

the values of the VLBI observables from the clipped signals

recorded at each site during an observation. The data

recorded in each frequency channel, at each site, are cross

correlated in segments. These segments, referred to as

accumulation periods, are typically of 2 seconds duration.

From these complex cross correlation functions, cross spectral

components are computed at 7 discrete frequencies in each 2

MHz bandwidth channel. In Appendix A, we show that the esti-

mates of group delay, phase-delay rate and visibilty phase are

obtained by estimating the parameters of surface, which is

linear in both frequency and time, from the cross-spectral"-
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phases. (This estimation process is performed by maximizing

the delay resolution function. Also, separate group delays

are used to model the phase variations across the 2 MHz

channels and across the synthesized band (see Appendix B for

details), the first of these delays being referred to as the

singleband group delay and the second as the multiband group

delay.)

The observed cross spectral phase for each accumulation

period and frequency component will not exactly match the

phase calculated from the group delay, phase delay rate and

visibility phase. We would expect these differences to be in

accord with the statistics of the signals and the noise. It

is these differences we wish to study.

In studying these differences we are, however, faced with

*a dilemma. For a four-channel, dual sideband observation of

100 seconds duration, there will be 2800 phase differences (50

* accumulation periods x 4 channels x 14 cross spectral frequen-

cies) . In a typical multi-antenna intercontinental VLBI

experiment there will usually be over 1000 such observations

per day. Even if the phase differences are stored as single

precision numbers, one day of data would take 11.2 Mbytes of

storage. Detailed analysis of this volume of data is imprac-

tical (with currently available computers).

In this section we will study averages of these phase

differences. In this way we can reduce the volume of data to

be analyzed to tractable size. These averages will be taken

over time and frequency within each channel (both upper and
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lower sidebands). For a four-channel dual-sideband observa-

tion, the 2800 phase differences are reduced to four phase

differences, one phase difference for each frequency channel

in the synthesized band. We will refer to these averaged

phase differences as "residual phases". These phases are

shown schematically in Figure 3.1.1. The averaging is carried

out in the program "FRNGE" which estimates the group delay,

phase delay rate and visibility phase for each observation

(see Appendix B) . The residual phases are stored in the

geodetic data base (Ma, 1979) and hence can be easily accessed

and analyzed.

For the statistics of the signals and the noise sources

given in Chapter 2, we would expect the residual phases to be

zero mean, Gaussianly distributed, random quantities.

To introduce the discussion on residual phases we show in

Figures 3.1.2 and 3.1.3 plots of residual phases as a function

of time from observations of the radio source 3C 345 during

the June 1981 experiment. These plots show the residual

phases in each of the four frequency channels used in these

observations. The residual phase in Channel 1 (frequency

8.34099 GHz) is shown with a letter which represents the

source being observed (these plots show the residual phases

4 for a single source 3C345, denoted by the letter E). The

residual phases in the remaining channels are denoted by

numbers (i.e., the numerals 2, 3, and 4 denote the 8.24099

.4 GHz, 8.49099 GHz, 8.54099 GHz channels, respectively).

At approximately 7:00 hr UT, typical error bars, based on
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Figure 3.1.1 Graphical representation of the residual phases
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Figure 3.1.2 Residual phases for the Haystack to Ft. Davis baseline

0:00 _Date 16 June, 198i

Symbols 4 Z" 3

E= 8.34099 GHz
I 2 8.24099 GHz -A

38.49099 -.z
4= 8.54099 GHz E

2.:00 4.L . -.

Aa

3:00f. .

-3

4:00 2 3

• 5:00

"l 3

4!4

>'7 4 _ -.3

9 :00 . 4- '

C. ' >

4 70"
4

- -4 3

12 0 *_ , . 3 t

0 I I ' J~

10:00.

Z4. 1

I- 10:00[

12:00

-10.0 -5.0 0.0 5.0 10.0

Residual phase (deg)

V..............................................', """. * ,:,.-' .' ;,-''".,, ",'. -. . *. . . . , . . ."' '.I W "'"" "-"" " ' ' ' ' " ,''2 . '''



,ll%['-, 62-

Figure 3.1.3 Residual phases from the Haystack to Owens Valley baseline
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the signal-to-noise ratio (SNR) of these observations are

shown. The error bars take into account that residual phases

are the differences between the observed phases in each chan-

nel and the calculated values for these phases, after esti-

mating the multiband group delay and visibility phase. The

uncertainties of the residual phases in the frequency channels

at the edges of the synthesized band are approximately 20%

smaller than those in the center band, because errors (either

random or systematic) in these outer channels tend to be

absorbed into the estimate of the group delay (see Appendix E

for a discussion on the methods used to calculate these

uncertainties).

Figure 3.1.2 shows approximately the behavior of the

residual phases we would expect, i.e. zero mean and random

scatter, although the scatter of the values is approximately

1.5 times larger than we would expect given the signal-to-

noise ratio (SNR) of these observations (we discuss this topic

in more detail later in this section) . Figure 3.1.3 shows a

very different character. The residual phases do not have

zero means and there are systematic variations with time. We

believe we understand the origin of most of these systematic

variations. We will discuss this topic in Section 3.2 when we

investigate the behavior of the phase calibration system. we

will concentrate in this section on the mean values of the

* residual phases and their scatter about these mean values.

We hope to answer several questions by studying the

behavior of the residual phases: a) what is the origin of
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the nonlinear behavior of the visibility phase with frequency?

b) what is the long term stability of the mean values of the

residual phases? and c) what can we deduce about the uncer-

tainties of the group and phase delay measurements based on

the scatter of the residual phases?

The non-zero mean values of the residual phases indicate

that the Mark III system is dispersive. We would expect the

Mark III receivers to be dispersive, but, we should also

expect the phase calibration system to remove most of this

dispersion (we will discuss below the meaning of "most"

shortly), because the phase calibration pulses travel with the

signals through nearly all of the system. The parts of the

receiving system that are not calibrated by the phase cali-

bration system are the feed horn and the waveguide up to the

point where the phase calibration pulses are injected. After

this injection point any dispersions in the system should be

calibrated and removed by the phase calibration system.

So let us start our investigations of the origin of the

dispersion with a discussion of the dispersive properties of

feed horns and waveguides. Propagation through waveguides is

discussed in most books on electromagnetic radiation. The

phase velocity of a wave propagating through a hollow cylin-

drical waveguide with cut-off frequency w (i.e., the lowest

frequency wave which will still propagate through the wave-

guide) is (Jackson, 1975, p. 344, MKS units),

vp = (lvTc) (l- (WX/W) 2)-1/2

0

-.' , , .. . ., .- .. , *, , .. . . . .. . . ••* *, . . , , , % - , , , - .j . .- .. .,-.., / , .-.'. *.. , . .-.- '.' .'. - ., -*. ,, . .,, . .. : ,, ,, ., . ,,, * :
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where E and 4 are the permittivity and permeability of the

material inside the waveguide (in our case this material is

air and hence l//ep c, the free space velocity of propaga-

tion), and w is the frequency of the propagating wave. The

change in phase of a signal propagating through a waveguide

with a free space length of T will be

Aw= 0°  (I-(w/w) 2 )1 / 2 " (3.1.1)

The group delay, ATw for propagation through the waveguide

may be obtained by differentiating Equation (3.1.1) with

respect to angular frequency. This differentiation yields

= 2o (i-(wX/w)2-1/ 2 . (3.1.2)

Clearly the propagation through the waveguide is disper-

sive. But is this dispersion sufficiently large to cause the

offsets in the residual phases seen in Figure 3.1.3? To

investigate this possibility, the phase changes due to the

propagation of a signal through a 10' long waveguide (To * 10

nsec) with a cutoff frequency of 5.3 GHz (cutoff wavelength of

. 5.7 cm) were calculated. (This cutoff frequency is typical

for the X-band waveguides in the Mark III receivers (Rogers,

1983, private communication).) In Figure 3.1.4 we show these

4 phases computed at the frequencies used in the June, 1981

experiment. In the lower part of this figure we show the

residual phases which would be seen after the group delay and

visibility phase had been estimated. (We have assumed that

this waveguide precedes the injection point of the phase

?.
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Figure 3.1.4 Waveguide dispersion and expected residual phases
(10' of waveguide with wx=5.3 GHz)
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calibration pulses.) We can clearly see in Figure 3.1.4 that

the waveguide dispersion cannot explain the residual phase

pattern (as a function of frequency) observed on the Haystack

to Owens Valley baseline.

(We should note that the phase delay through this wave-

guige computed from the least squares fit to the calculated

phases is 7.8 nsec while the group delay is 12.9 nsec. There

is a large offset between the group and phase delay. This

offset will need to be accounted for when the ionospheric

delay corrections are computed from group and phase delays (we

will discuss this topic in detail in Section 4.2.2).)

Calculations of feed horn dispersions yield similar

results to those shown in Figure 3.1.4. The change in phase

due to the dispersion may be large (over one cycle for the

waveguide case), but the residual phases will be small because

over a limited spanned bandwidth, the dispersion is very close

to linear.

The ionospheric dispersion (see Chapter 4 for details)

will produce residual phases at X band of less than 10 , again.,

because over the limited spanned bandwidth the inverse

* frequency relationship is almost linear. (For a differential

electron content of 10 electrons/m (corresponding to an

ionospheric delay at X-band of =1.3 nsec) and the X-band

frequency sequence shown in Figure 3.1.4, the maximum residual

phase would be -0?i in the 8.34 GHz channel. At S-band, where

the ionospheric effects are much larger, the residual phases

could reach -0?4 in the 2.70 GHz channel (assuming the channel

0 : " " % / J ". ' ' - ' % " '2 , ', . ' ," .";. " -% " . " . " ' -" , " -% " -
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sequence is 2.295 GHz, 2.270 GHz and 2.220 GHz). This

frequency sequence was used in our July 1980 and June 1981

VLBI experiments.

The next possible origin for the dispersion which we will

investigate is multiple reflections. We will study a simple

example of a multiple reflection that will allow us to

characterize the general properties of multiple refections.

For a multiple reflection to exist there must be at least two

reflecting boundaries in the propagation path of the signals

(the signal in this case could be either the radiation from

the radio source or the phase calibration pulses). In our

simple example, a multiply reflected signal will be generated

whenever a signal is partially reflected from one boundary,

reversing its propagation direction, and then again partially

reflected from another boundary, again reversing its

propagation direction (hence the name "multiple reflection").

In Figure 3.1.5 we show the geometry for multiple reflections.

The characteristics of the multiple reflection can be

specified by three parameters: the distance between the

reflecting boundaries, and the reflection characteristics of

each of the boundaries.

The specification of all of the possible reflecting

boundaries in the Mark III system is beyond the scope of this

thesis. We will, instead, try to characterize generally the

properties of the multiple reflections in the Mark III system

based on the available residual phase data. The examination

of all of the reflecting boundaries in the Mark III system is

40
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Figure 3.1.5 Geometry of a multiple reflection

(see text for symbol definitions)
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actually not necessary. Any multiple reflection which occurs

after the injection point of the phase calibration pulses will

equally affect the phases of both the signals from the radio

source and the phase calibration signals. When the phase

calibration phases are subtracted from the video DC cross

spectral phases (see Appendix B), the changes in cross

spectral phases due to the multiple reflection will be removed

provided that the multiple reflection does not occur over such

a large distance that phase "ripples" occur over the 2 MHz

recorded bandwidth (see further discussion later in this

section).

In the lower section of Figure 3.1.5 we plot as a

function of frequency the effect of a multiple reflection on

the phase of a signal which has been multiply reflected. The

amplitude of the phase error will be a function of the reflec-

tion properties of the boundaries. The "wavelength" of the

error, i.e. the change in frequency necessary for the error to

complete one cycle, will be a function of the distance between

the reflecting boundaries.

We will derive the relationship between the phase errors

and frequency as a function of the distance, D, between the

reflectors, and the Fresnel reflection coefficients of the

boundaries, R1 and R2 (see Figure 3.1.5). We will assume that

the reflection coefficients are sufficiently small that we can

use small angle approximations in calculating the phase

errors. (The magnitude of the dispersion (<100) indicates that

these approximations should be adequate for our calculations.)

0-
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We will also assume that the reflecting boundaries are normal

to the direction of propagation of the radiation.

In Figure 3.1.5 we show the amplitude of the electric

field after each interaction of the signal with a boundary.

The amplitude of the directly transmitted signal will be Et =

TIT2Eo where T1 and T2 are the two Fresnel transmission coef-

ficient of the reflection boundaries, and Eo is the amplitude

of the electric field before any reflections. These transmis-

sion coefficients are related to the reflection coefficents by

T1 =1+R 1 and T2 = I+R2  (See, for example, Kong, 1975, Chapter

4). The amplitude of the multiply reflected signal's electric

field will be Er = R R2 TIT 2 Eo and its phase, relative to the

directly transmitted signal, will be *r = 2Dw/vp, where D is

the distance between the reflectors, and vp is the phase

velocity of propagation through the medium between the

reflecting boundaries. The phase error, A mr, at frequency w,

due to the muliple reflection will be (see Figure 3.1.5)

Amr =RiR2 sin(2Dw/vp) . (3.1.3)

Does this expected error match the observed residual phases?

The widely spaced frequencies used in geodetic experi-

ments do not allow us to answer this question because the

phase error could oscillate many times in the frequency

intervals between the channels. We can, however, calculate a

minimum value for the reflection coefficients. For a 40 phase

error to be generated by multiple reflections (this value is

the maximum mean residual phase on the Haystack to Owens

Valley baseline in June 1981; see Figure 3.1.3), the product

. .. __I
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RIR 2 must be at least 0.07. If we assume that RI=R2, then the

power reflected at each boundary is 7%. However, mean

residual phases of up to 160 have been observed for other

baselines in other experiments (see Figure 3.1.6), which would

imply power reflections of up to 28%.

To study the frequency dependence of the multiple reflec-

tions we need to look at observations with uniformly spaced

frequencies so that the sinusoidal signature of a multiple

reflection can be seen. This type of observation is generally

only used for astronomy observations of weak sources (where

spanned bandwidth is not important). We do, however, have one

set of observations on a strong radio source. (Strong sources

or large antennas are necessary to ensure that the random

errors in the residual phases are small.) In Figure 3.1.6 we

show plots of the residual phases at both X- and S-band from

the triplet of baselines involving Haystack, NRAO and

Effelsberg. (These stations were chosen because in all cases

the standard deviations of the residual phases were less than
0
1 .) Each plot shows results from observations of the radioz

source 4C39.25, at two epochs separated by 2 hr 27 min. This

radio source was only observed twice in this experiment. The

primary observations in this experiment were of 1038+528A and

B (Marcaide, 1982).

The residual phases in Figure 3.1.6 do not match the

expected sinusoidal variation expected from a single multiple

reflection. This lack of agreement could be due to there

being more than one multiple reflection in the system (e.g.,

40
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Figure 3.1.6 Residual phases in seven contiguous frequency channels (dual

sideband) at X- and S-band March 17, 1981
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possibly both the signal from the radio source (before injec-

tion of the phase calibration pulses) and the phase calibra-

*. tion pulses (before being injected) are multiply reflected.

If the variations of the residual phases are due to multiple

reflections, we can calculate a minimum distance between the

reflecting surfaces. For each baseline in Figure 3.1.6, the

residual phases seem to "cycle" at least once over the 28 MHz.

From Equation (3.1.3), we see that for A mr to rotate through

one cycle in 28 MHz, the minimum distance, Dmin, between the

reflectors must be

Dmin - vp/(2Af) 6.25 m

where we have taken vp=c. The phase velocity through the

waveguide could be as much as 28% greater than c (see

Equation 3.1.1), thus increasing Dmin .

The residual phases for the two epochs agree well for the

Haystack to NRAO baseline and reasonably well for the X-band

band results involving baselines to Effelsberg. The S-band

results for the baselines involving Effelsberg, however, show

0differences of up to 4° . (This is approximately 10 times the

standard deviation of the difference on the NRAO to Effelsberg

baseline.) There are no apparent errors in the processing of

any of these S-band results and we are led to suspect that the

difference is due to a change in the antenna or the receiver

between these two observations. The Effelsberg antenna is 100

m in diameter (it is the largest fully steerable antenna in

the world), and possibly we are seeing some changes in the

geometry of the antenna (the observations were at elevations

I- <:~~~~~~~~~~~~~~~~..:..-: ................ .. . .- , .. -- •'- . .- " - . .-. .
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of 720 and 500) . There is also a possibility that these

variations are due to the phase calibration error which will

be discussed in Section 3.2. Unfortunately with only two

observations it is not possible to identify this error (see

the method used to detect phase calibration errors in Section

3.2).

Another possible cause of the dispersion is asymmetry of

the phase calibration pulse shape. This problem is very

similar to multiple reflection of the phase calibration

pulses, because a multiple reflection results in a distortion

of the pulse shape. The effects of pulse shape on the phase

of the calibration pulses can be studied using the convolution

theorem of Fourier transforms (Bracewell, 1978, p.108). The

phase calibration pulses, pc(t) , can be represented (in the

time domain) by

(t M NO~u III(t/t -u) du (3.1.4)

where h(u) is the pulse shape function, t is the time

interval between pulses, and III(t/t p-u) is the sampling or

replicating function (Bracewell, 1978 pp. 77-79) and repre-

sents an infinite series of Dirac delta functions separated by -

tp Pa
The Fourier transform of Equation (3.1.4) will be given

by (using the convolution theorem)

(w) = HMw TII(w/w p (3.1.5)

where wpis the frequency spacing between the comb elements of

the phase calibration rails (see Section 2.3) and equals
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* 2%/t .From Equation (3.1.5), we can see that the phase of

P PC (w) will depend on the Fourier transform of the pulse shape.

We should notice that if the pulse is very sharp, i.e. if the

* duration of the pulse is very small, then the phase of H(w)

* cannot vary rapidly with frequency. (This result can be

deduced from the bandlimited nature of the pulse in the time

domain.) From Figure 3.1.6 we can deduce properties of the

pulse shape, if the pulse shape is the cause of dispersion.

* Since we see deviations of 50 in the residual phases which

seem to cycle in 28 MHz, we can deduce that -0.1 (sin 5 0) of

the power in the pulse must occur at least 0.035 psec (1/28

* MHz) away from the main pulse. Given that the pulse is

supposed to be less than 0.00005 p&sec duration these numbers

seem very unlikely.

These results do suggest a possible cause for the

dispersion. The Mark III pulse generator produces a pulse

every zero crossing of the 5 MHz input signal, i.e., 10

pulses/ipsec are produced. Nine of the ten pulses should be

suppressed, or gated, before they enter the Mark III receiver.

However, if the gating electronics are not working properly,

then some of these additional pulses could be entering the

receiver and corrupting the phase calibration signal extrac-

tion. An additional pulse could be 0.1 psec away from the

primary pulse which is in accord with the minimum separation

which we calculated from Figure (3.1.6) (0.035 jisec) . The

* gating electronics should be carefully checked.

We have now studied several possible causes of the dis-
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persion in the Mark III system and none of the causes (indi-

vidually) could fully explain the observed ampltitude verus

frequency pattern of the dispersion. All of the possible

causes studied probably contribute to the dispersion to some

extent. An analysis of the Mark III hardware is now being

commenced to ascertain, if possible, the origin(s) of the

dispersion. We now investigate the seriousness of the disper-

sion on the measurement of the visibility phase and the group

delay.

The dispersion in the Mark III system can cause two

problems. Firstly, if the relative weights of the data in

each frequency channel change with each observation then the

contribution of the dispersion to the group delay will change

because the group delay estimation is a weighted least squares

fit of a slope to the cross spectral phases (see Appendix A).

Secondly, if the dispersion is time dependent then there will

also be variations of the group delay.

The first of these points may be addressed by simply

calculating the weighted least squares fits to a set of hypo-

thetical cross spectral phases using different weights in each

channel. In Figure 3.1.7 we show, as an example, the results

of such a series of calculations. We have chosen the S-band

4frequency sequence which was used in experiments up to June

24, 1981. The frequency channels are located at 2.295 GHz,

2.270 GHz, 2.220 GHz. This sequence was chosen because in

Chapter 4 we will be analyzing extensively data taken at these

frequencies. In addition the S-band group delays will be most

4%
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sensitive to weight changes because of the narrow spanned

bandwidth (75 MHz), and the use of only three frequency chan-

nels. To generate Figure 3.1.7 we assumed that there was a 50

dispersion in the 2.220 GHz channel and that the weight of

this channel relative to the 2.295 Ghz and 2.270 GHz channels,

whose weights remained constant, changed between 0 and

infinity. The group delay errors are referred to the case

when the weights in all channels are equal because this should

be the typical value for most observations. (The change in

weight of the 2.220 GHz could be due either to changes to the

amplitude of the signal or to changes in the number of

accumulation periods used from the channel.) In Figure 3.1.7,

we see that even for a small dispersion the errors in the

group delay can be as large as 0.2 nsec. However, we should

notice that large errors (>2 cm) only develop for very

disproportionate weights among the frequency channels. (Note

that the multiband group delay does not approach the single-

band group delay as the weight of the 2.220 GHz channel

approaches infinity because these two delay types are treated

as independent parameters by FRNGE; see Appendix B.3 for

details.)

We now address the constancy of the dispersion. Even

though the precise origin of the dispersion is not known, we

can study the constancy of the dispersion by accumulating

their statistics from several experiments. There are two data

sets which we can use for these studies - the short MERIT

campaign and the POLARIS experiments (see Chapter 5 for
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experiment details). We study these two sets of data because

for long periods of time (one month for MERIT and six months

for POLARIS) the Mark III systems were left undisturbed at the

radio telescopes.

In Figure 3.1.8, we show one-day averages of the residual

phases from the short MERIT campaign for three baselines:

Haystack-OVRO 130, Haystack-Onsala 60, and OVRO 130-Onsala 60

(see Figure 5.1 and Table 5.1 for station locations and

definitions for terminology). Each point plotted is an

average of between 60 and 100 residual phase values and hence

the uncertainty of each mean value is quite small, typically
So

<0.5. The uncertainties of the mean values are plotted at

representative points. These uncertainties were calculated

from the formal standard deviation of the mean, scaled by the

normalized-root-mean-square (NRMS) scatter of the individual

values about the daily mean. (The NRMS is the square root of

the X2 per degree of freedom of the fit of the observations to

the mean value; see detailed discussion later in this

section.)

One feature in Figure 3.1.8 is very noticeable. On

October 20, there is an apparent change in the dispersion at

OVRO 130. We should notice that the error bars for this day

are much larger than those for adjacent days, although the

difference between the mean residual phase for this day and

for the adjacent days is still many standard deviations, m6a.

The reason for the increase in the uncertainty is related to

the apparent change in the dispersion. In Figure 3.1.9 we

p,_



-81-

Figure 3.1.8 Daily mean residual phases from the short MERIT campaign
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show the residual amplitude for the anomalous day and the

preceding day. (The residual amplitudes are the differences

between correlation amplitudes in each channel and the mean

correlation amplitude for the observation.) The symbols in

these plots have the same meanings as those in Figures 3.1.1

and 3.1.2.

It is clear from Figure 3.1.9 that the residual ampli-

tudes show much more scatter on 20 October than on 19 October.

* (The scatter on 21 October was the same as that on 19

October.) Also Channel 4 (8.24 GHz) has systematically lower

amplitudes than do the other frequencies.

We mentioned earlier in this section that one of the

major problems associated with the dispersion is the apparent

change in the group delays, and consequently the apparent

change in the dispersion, when the weight given to a channel

is changed. The anomalous behavior on 20 October gives an

indication of how large these effects may be.

If we exclude 20 October from Figure 3.1.8, we see that

* there are still significant variations of the dispersion

between the daily averages. These variations seem to be less

*than 1 per day in most cases. What does this indicate about

* the constancy of thr dispersion? To answer this question, we

must remember that the group delay and visibility phase have

* been estimated from cross spectral phases and hence any varia-

* tions in the dispersion will be partially absorbed into these

estimates. Consequently, the real change in the dispersion

will appear smaller in the residual phases. (The phase delay
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rate is also estimated from the cross spectral phases.

However, since the group and phase delays are referred to an

epoch near the (temporal) center of the data, the phase delay

rate estimate is decoupled from the delay measurements. We

may therefore study the variations in the dispersion by

considering only estimates of the group delay and visibility

phase.)

We may calculate the expected reduction in the varia-

tions of the dispersion due to the estimation of the group

delay and visibility phase based on the formulas given in

Appendix E. In Table 3.1.1 we give the numerical values of

matrices applicable to studying dispersion variations (see

Appendix E for a discussion of the techniques used to generate

Table 3.1.1). We have generated this table for the frequency

sequences used up to June 24, 1981 because most of the data we

will be analyzing were obtained at these frequencies.

Of most importance to us at this time are the numerical

values associated with Equations (E.5) and (E.6). Equation

(E.5) relates the change in the dispersion (denoted by vector

er in Table 3.1.1) to the changes in the group delay and

visibility phase. Equation (E.6) relates the change in the

dispersion to the change in the residual phases, v, i.e. to

the apparent change in the dispersion as deduced from residual

phases such as those shown in Figure 3.1.8. (We should note

that the matrix which relates E to v is singular and hence it-r

is not possible to obtain unique values for e given v; see

Appendix E for further discussion.)

6•
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Table 3.1.1 Numerical values for studying the effects of

changes in dispersion

For X-band

Frequency sequence 8.34, 8.49, 8.54, 8.24 GHz.

From Equation (E.2), r= Axp
1~ -p

I 1.0 0.00'x pOt11.0 0.15 Lrgi

1.0 0.20

L 1.0 -0.10

where r and are in cycles, and T is in nsec.
-- g

From Equation (E.5.a), =p A $r

[-0. 319 0.154 0.099 0.421 cycle/cycle

1.099 1.538 2.418 -2.857j nsec /cycle

From Equation (E.6), v= -r-r = (I-AA-)r

v 0.681 -0.154 -0.099 -0.429 C-1-r
-0.154 0.615 -0.462 -0.001

-099 -0.462 0.417 0.143

0 .429 -0.001 0.143 0.2851

where cr is the change in the dispersion and v is the change

in the residual phases which would be produced by -Sr

S. .. . . . . .
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Table 3.1.1 Continued.

For S-band

Frequency sequence 2.295, 2.270, 2.220 GHz.

From Equation (E.2), tr = U

= 1.0 -0.0751 - -(t

* - where *rand *tare in cycles, and T~ is in nsec.

From Equation (E.5.a), 2 A
-p -

A- [0.714 0.429 -0.1431 cycle/cycle

11.428 2.857 -14.286] nsec /cycle

From Equation (E.6), -r (-A)

v = 0.286 -0.429 0.143'

-0.429 0.642 -0.214j

[0.14 3 -0.214 0.072]

where e is the change in the dispersion and v is the change
-r

in the residual phases which would be produced by ~

0I
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If we now reconsider the variations in the mean residual

- phases shown in Figure 3.1.8, we can make some estimates of

the stability of the Mark III system. As mentioned earlier we

cannot obtain unique estimates of the changes in the disper-

sion from the residual phases. One estimate of the variations

in the dispersion is exactly the variations in the residual

phases, i.e. one solution to Equation (E.6) is cr=v. There

would be no variations in the delay introduced by the disper-

sion if the c were equal to v. This solution is very

unlikely to be relevant. We may, however, use this solution

to obtain an estimate of the minimum variation of the

dispersion. The weighted root-mean-square (WRMS) scatter of

the mean residual phases about the mean values for each

* channel and baseline, is 0?7 (excluding 20 October).

-Variations of the dispersion of at least this amount occur in

the Mark III system. We cannot place an upper bound on the

variations of the dispersion (based on the residual phases)

because any variation in the dispersion which mimics a delay

or a phase offset will be absorbed into the group delay and

visibility phase estimates and hence not be seen in the

residual phases.
0I

The RMS variation of 0.7 in the dispersion implies varia-

tions in the group delays of up to 8 psec/day at X band and 36

psec/day at S-band (these values are obtained from the numeri-

cal values of Equation (E.5) given in Table 3.1.1). We will

compare these estimates with other estimates of the stability

of the Mark III system, obtained from predicting phase delay

4'''t """ """ . [ - "- "" ." m " -'; . " -,-.' ...-.- '. -.. ' ' -.'. i
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ambiguities from group delays, in Section 4.3.

We may further study the stability of the Mark III system

on a time scale of 6 months by analyzing the mean residual

phases from the POLARIS experiments. In Figure 3.1.10 we

show, for a six-month interval, the weekly values of the mean

residual phases from 24 hr duration observing sessions from

the eight channel, single sideband Westford-HRAS baseline

observations. Again, we see that the dispersion is large, up

to 70 for some experiments.

In general, the dispersion remains constant or varies

smoothly over the six month period except for one discontinu-

ity (in some channels) which occurred between 9/30/81 and

10/15/81. The mean residual phases from these two experiments

are plotted as a function of frequency in Figure 3.1.11.

Clearly, there seem to be changes in this dispersion curve at

both high and low frequencies. These changes would give us an

indication of the origin of the dispersion, if we could

isolate a specific change in the configuration of the Mark III

system at one of the antennas, because then we could deduce

* that this change affects the dispersion.

The station logs at Westford indicate that no changes

were made between the two experiments which show the discon-

tinuity (Webber, 1983, private communications). At HRAS, no

detailed station logs were being kept (at that time) , and

hence we could not establish whether any changes had been made

to the receiver (Sebring# 1983, private communication).

(Shortly after this time a detailed station log was started.)
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Figure 3.1.10 Weekly values of the mean residual phases from 24 hour

observing sessions for the Westford-HRAS baseline
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Figure 3.1.10 Continued
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Figure 3.1.11 Changes in the mean residual phases for the Westford-HRAS
baseline between 9/30/81 and 10/15/81
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For most of this section we have discussed the behavior

of the mean of the residual phases from 24 hr observing

sessions in an attempt to study the long term behavior of the

dispersion in the Mark III system. We now turn our attention

to the scatter of the residual phases from each observation

*" about the 24 hr mean values. These results are compiled in

Figure 3.1.12 where we have plotted the normalized

root-mean-square (NRMS) scatter as a function of the expected

scatter of the residual phases. (The NRMS is the square root

2of the x per degree of freedom of the residual phases about

their mean values. We plot this quantity, rather than the X

per degree of freedom, in order to decrease the dynamic range

of the plot.)

We see clearly from this figure that the noise in the

residual phases does not match the expected statistics of this

noise. The statistics of the residual phases indicate two

properties of the performance of the Mark III system.

Firstly, there appears to be a limit on the accuracy of the

* Mark III system, i.e. even for observations of very strong

radio sources the residual phases still show scatter which

presumably arises from instrumental noise that is independent

* of the radio source being observed (e.g., the effects of

- variation in the weights of each channel when there is a large

dispersion present; variations in the dispersion (see earlier

-f discussions); and "noise" in the phase calibration system; see

Section 3.2). Secondly, the NRMS scatter does not approach

- unity as the signal strengths decrease. This behavior could
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Figure 3.1.12 Normalized RMS scatter of the residual phases as a function
4.4 of their theoretical scatter
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*be due to instrumental noise sources which are a function of

signal strength, e.g. the correlator non-reproducibility seems

to behave in this fashion (see Appendix B.4).

We have empirically fitted a model to the behavior of the

NRMS scatter which is shown as the solid line in Figure

3.1.12. This empirical model relates the "actual" standard

deviation of the residual phases, o (as deduced from their

scatter), to their formal standard deviations, ao, by

-a22 + a2 (3.1.6)

t r o c

where ar and ac are the parameters to be estimated. The solid

* curve shown in Figure 3.1.12 corresponds to a r=1 .5 and ac= °

(These values were approximately calculated to match the

* results shown in Figure 3.1.12.) These results will form the

first part of our compilation of the performance of the Mark

III system.

In Figure 3.1.13, we show a compilation of the statistics

of the residual phases similar to that shown in Figure 3.1.12,

for the intercontinental experiment conducted in November 1981

and the transcontinental experiment in June 1981. In this

* figure we also show the empirical law for the relationship

*. between the NRMS and the formal estimate of the scatter which

was deduced from the MERIT data. It is clear that in thei
eight- to twelve-month period between these experiments and

the MERIT experiments, the scaling factor in the empirical

relationship seems to have come closer to unity. This

-improvement is probably related to the improvement in the tape

4o
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quality between these experiments. Unfortunately, there are

no very small standard deviation observations in the recent

experiments which would allow us to assess the effect ona

(The formal uncertainties of the residual phases are larger in

November 1981 than in June 1981 and MERIT, because the

November experiment used single sideband recording. We would

expect an increase in the formal errors of -/2 because less

data are used to form a channel with single sideband

recording.)

We will return to these discussions of equipmuent perfor-

mance after we have discussed the phase calibration system

performance and the delay closures around triplets of base-

lines.

3.2 Phase calibration system

In Section 2.3, we discussed the operation of the phase

calibration system. We now discuss the analysis of the phase

calibration measurements. Firstly, we consider the components

* of the Mark III system which affect the phase of the calibra-

tion signals. We will then discuss the interpretation of the

calibration phases from some VLBI experiments. As with the

* residual phase behavior, we will defer detailed analysis of

the individual observations until Section 4.3, when we discuss

the phase delay ambiguity elimination results.

in Figure 3.2.1 we show the calibration phases for a

six-hour period, from the 8.34 GHZ channel at Onsala, on July
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Figure 3.2.1 Phase of the calibration signal in the 8.34 G~iz channel
at Onsala during observations of 3C 345 and NRAO 512
on July 27-289 1980.

"TRTJON ONSALA69
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CALIURTION PHASE CHANNEL 1 (beg)

Legend

The letters A and B denote observations of 3C 345 and NRAO 512,

respectively. The lower case letters denote observations on

each radio source which have been flagged as defective byA
FRNGE (see discussion at beginning of Chapter 3).

See Table 5.2 for IAU convention names for these radio sources.

7:7
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*28, 1980. (The lower case letters in this and other plots in

this thesis, denote observations which have been flagged as

defective by FRNGE; see beginning of Chapter 3.) These phases

drift between ±1800 over the six-hour period. What do we hope

to learn from these phases? To answer this question we

firstly need to consider the components of the Mark III system

which affect these phases. In Section 2.3, we discussed the

operation of the phase calibration system. A 5 MHz signal is

sent, via coaxial cable, to the receiver where it is used to

* generate the LO frequencies for the first mixers and the

4 pulses for the phase calibration system. These phase calibra-

tion pulses are injected into the signal train before the

* first mixing and amplification operations. The pulses then

propagate, with the signals from the radio source, through the

*same components of the Mark III system. Based on this flow of

- the calibration signals, we can write an expression for their

phase:

Ocal = cable + L0 +vc + *instr (3.2.1)

*where #*cal1 is the phase of the calibration signals, *cable is

* the contribution to *ca from the length of cable carrying the

* 5 MHz signal (usually we only monitor changes in the cable

length; see Section 2.3)l *L is the contribution of the phase

of the first local oscillator, vcthat of the oscillator in

*the video converter for the channel, and *instr that of the

- instrumental delays.

Of the four contributions to $call the phase due to the

first local oscillator is the most rapidly varying. However,
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this term is common to all channels within one frequency band

(either X- or S-band; see discussion on heterodyning in

Section 2.1), and hence may be removed by differencing the

calibration phases from two channels. In Figure 3.2.2, we

show such differences for the Onsala system, after removing

mean differences. We see now that the rapid variations seen

in Figure 3.2.1 no longer exist, indicating that most of the

variation in that figure was due to the phase changes of the

first LO.

We may use these differenced phases to compute the

contribution of the phase calibration signals to the group

delays by estimating the derivative with respect to angular

frequency, of the calibration phase differences (see discus-

sions in Appendix B on the use of the phase calibration

phases). These delays will be referred to as the "phase

calibration group delays." we show the contribution of the

phase calibration signals to the group delays at Onsala in

Figure 3.2.3.

We now examine in some detail the phase-calibration

results at other sites. In Figure 3.2.4 we show the contribu-

tion of the calibration phases to the group delay at Haystack

during July 27-28, 1980. (This day was devoted mostly to the

3C345/NRA0512 difference experiment which will be analyzed in

Section 4.3.) We should notice that for the last three hours

of this experiment, the phase calibration group delays show an

oscillating pattern. The residual phases for baselines

involving Haystack for this same interval of time also show a

i .i
*, .- " " . . . . . . ' . . . .". . . . .. ."' ' ' ' " " " ' " '"" "
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Figure 3.2.3 Contribution of the calibration phases to the group delays

for baselines to Onsala (see Figure 3.2.1 for details of

symbols).
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Figure 3.2.4 Contribution of the calibration phases to the group delays
for baselines to Haystack (see Figure 3.2.1 for details of
symbols).
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similar behavior. When these data were further analyzed, it

was found that both the residual phase data and the oscilla-

tion of the phase calibrated group delays, were artifacts of

the phase calibration system, i.e. there were errors in the

calibrations not in the quantities which were being

calibrated.

The major evidence for this conclusion is shown in Figure

3.2.5. We plot for each frequency channel, the amplitude of

the phase calibration signal as a function of its phase.

There are clearly sinusoidal variations of the amplitude with

the signal phase. This type of pattern is consistent with the

addition of a coherent signal to the phase calibration signal.

We show graphically the effects of such an additional signal

in Figure 3.2.6. (We shall call this additional signal, the

"spurious signal.") If we assume that the spurious signal has

a constant amplitude and phase relative to the phase

calibration signal we can write an expression for the observed

amplitude as a function of the phase of the calibration

signal. From the geometry of Figure 3.2.6, we have

A2 =A 2  + A 2 + 2A A Cos(*a-,s) (3.2.2)obs cal s cal s cal s

where Aobs , Acal, and As are the observed calibration ampli-

tudes, the actual calibration amplitude, and the spurious

signal amplitude, respectively, and *obs' $cal' and 0 are the

observed calibration phase, the actual calibration phase and

the spurious signal phase, respectively. We now wish to

develop an algorithm which will allow us to calculate A. and
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Figure 3.2.6 Graphical representation of the effects on the calibration
signal of a spurious signal with constant amplitude and
phase.
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0 from a set of Aobs s at different values of obs Once A

and 0s are known we can then reconstruct Acal and * cal from

the observed calibration signals.

If we assume that A Acall then we can linearize

Equation (3.2.2), which will make the estimation of As and s

much simpler. The linearization of Equation (3.2.2) yields

Aobs Acal + AsCOS( ca s ,

which may be rearranged to yield,

cAobs =A + A cos( ) + ASsin(s c) ,(3.2.3)bs cal s cal s cal

c s
where AC=Ascos4s and As=Assin*s. If As << Acal, then e, the

error in the calibration phase, will be small, and we may

approximately equate *cal and *obs in the cosine and sine

terms in Equation (3.2.3). This substitution yields

A o A + ACos($ s ) + AsS.n(o (3.2.4)
obs cal s obs in(obs)

Also based on the geometry of Figure 3.2.6, we may write an

expression for the error in the calibration phase, E. Hence

E tan-'[( Acsin, s-Acoso )/A ] (3.2.5)4s obs s obs cal

and the corrected calibration phase will be given by

cal m Oobs + c "(3.2.6)

In Figure 3.2.5, we have superimposed the expected amplitude

variations with changes in the phase calibration signals.

(The differences between the predicted curve for the amplitude

versus phase and the observed values, for the 8.34 GHz chan-

. • , . . . , , . ° °- . .. - % " . . . . .. . . . ° . , . , -. ,o ,. .. ° .. ,. ° -. . - . • . . ." . ..
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nel, are due to a variation of the calibration amplitude with

time; see discussion in Section 2.3.)

The Haystack radio telescope was not the only antenna to

be affected by a spurious signal during the July 1980 experi-

ment. The Onsala antenna also was affected. We show the

phase calibration signal amplitude versus phase values for

these observations in Figure 3.2.7 Again we see a very dis-

tinctive dependence of the amplitude on the phase, especially

in the 8.34 GHz and 8.54 GHz channels.

We show in the Figure 3.2.8, the phase calibration group

delays at Haystack and at Onsala before and after correcting

for the spurious signals. We notice that, at Onsala, the

phase calibration contribution to the group delays is almost

totally removed when the correction for a spurious signal is

made. At Haystack, however, there still appear to be residual

oscillations in the later part of the experiment. There are

several reasons for this behavior. Firstly, the formulation

we presented for estimating the magnitude of, and correcting

for, a spurious signal was linearized. The ratio of the

spurious signal strength to the calibrat4.on signal strength in

the 8.54 GHz channel at Haystack was 0.21. This ratio is

sufficently large for the linearization to introduce sizable

errors. (The second order terms will be 0((0.21)2), implying

that the correction could be in error by as much as =20%.)

Secondly, we have assumed that the spurious signal is constant

in both amplitude and phase; this need not be the case. A

comparison of Figures 3.2.8.a and b indicates that at Haystack
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the spurious signal may not be constant, i.e., at times the

correction seems to be too small and at other times too large,

indicating that the spurious signal may be varying with time.)

The large magnitude of the spurious signal at Haystack

seems to be anomalous (the effect of the spurious signal is

three times larger at Haystack than at Onsala). Consequently,

we have not developed any software which will handle the non-

linear problems or the possibility of time variations of the

spurious signal.

In Figure 3.2.9, we show the residual phases at Haystack

before and after the correction for the presence of the spuri-

ous signal. Again, we see that the systematic trends in the

residual phases are lessened by the correction, but not

totally removed.

We have so far discussed the detection and correction of

the spurious signal effects, but we have not discussed its

origin. Unfortunately, the exact origin of the signal has not

been determined, although there are many possibilities. The

reason for the many possible origins is simple: almost every

electronic component in a radio telescope is controlled by the

5 MHz signal generated by the hydrogen maser, e.g., the pulse

generator, the local oscillators in the receiver and the video

converters, and the time synchronization of the tape record-

ers. Consequently, there is a high probability that one or

more of these pieces of equipment generated the spurious

signal.

After the spurious signal was detected, guidelines were

",._2'-
-A . . . - .. V.A 'V' Aq. -
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set up to check for the presence of spurious signals in the

output of the receiver and to ensure better isolation of the

different pieces of equipment (Rogers, 1981). The effective-

ness of these guidelines will be assessed when data taken

after the guidelines were issued can be fully analyzed. An

initial analysis of the two multibaseline intercontinental

experiments (June 1982 and December 1982), performed after the

introduction of the quidelines, has not detected any spurious

signals.

In this section, we have tried to demonstrate methods for

*! studying the Mark III performance by analyzing the system's

calibration data. The spurious signal problem indicates the

care that must be taken when accurate observations are

attempted with a complex piece of equipment. We will consider

the behavior of the phase calibration system again in Section

4.3 when we are analyzing the prediction of phase delay

ambiguities from group delays.

3.3 Group delay closures

We now discuss the final quality check which we will

investigate in this chapter -- the properties of the sum of

the delays around triplets of baselines. These sums will be

referred to as delay closures. In this section we will study

the closures of the group delays because these are the delays

which are used in geodetic data processing. As with earlier

sections in this chapter, we will study some specific examples

61
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of this quality check, but we will not be able to present all

of the results which have been obtained thus far.

Delay closures around triplets of baselines have been

used as a quality check since the first multibaseline Mark I

VLBI experiments (Whitney, 1974, pp. 276-279). The delay

misclose, Aim, around a triplet of baselines is given by

(ibid, p. 277)

m= 12 + 23- 13 + 12-23 (3.3.1)

where T1 2 ' T13' T23 are the observed delays (either phase or

group) for the three two-element interferometers formed by the

pairs of tne three sites, and i23 is the observed phase delay

rate for the interferometer formed by Sites 2 and 3. The

final term in Equation (3.3.1) accounts for the epoch of the

delay measurement being referred to the time of arrival of a

signal at the "first" site in an interferometer (see Whitney,

1974, p. 276, and Appendix B). The method we have adopted to

evaluate Equation (3.3.1) is not direct computation. We have

instead used the property of the theoretical delays computed

by VLBI analysis software; these delays sum to zero around a

triplet of baselines (when they are referred to the same

epoch) , i.e.

T t t t+ t 4t
S12" 23 13 12 23 0 (3.3.2)

where the superscript t refers to the theoretically calculated

delays. If we now subtract Equation (3.3.2) from Equation

4

,.. . .. . . ......... ... .... . - , * .- * -. . . ." ", ",2"-.'" "-."-. - ,.''..-*''''i:: :
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- (3.3.1), we obtain

A t a

=-m (112 -112) + '23- V23) - .'l3 13~ + ('n12-12)t 23

+ (t 3tt3) 2

a tIf we now introduce the postfit residuals, vij=( ij- t ), then

the above equation reduces to

ACm v 12 + v23 - v1 3
+ v1 2 i2 3 + O23'12 .

The final two terms in the above equation are very small and

can be neglected in the calculation of the closures. (For

v12=1.0 nsec, 023-1.0 psec/sec, the maximum contribution to

the closure calculation of the final two terms will be 0.002

psec and 0.020 psec when t23=2.OxlO 6 sec/sec and vl2-0.02

sec. The latter two values are upper bounds for Earth based

VLBI.)

When the final two terms of Equation (3.3.3) are neglect-

ed, the calculation of the delay miscloses reduces to simply

summing the postfit residuals around baseline triplets.

In Figure 3.3.1, we show the delay closures at both X-

and S-band, for the radio source 3C 345, on two triplets of

baselines. The error bars shown are calculated from the sum

4 of the variances of delays from each baseline in the triplet

and are shown at typical points. We show in Appendix C that

the variance of the misclose calculated in this manner should

be an overestimate, due to correlations between the observa-

tions on each baseline, by less than 1%.

S.. .* . . . ..-. * .. * .
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The X-band miscloses shown in Figure 3.3.1 do not show

any particular trends although their scatter is 1.3 times

greater than we would expect from the standard deviations.

The S-band results, however, do show systematic trends. These

miscloses could be due to the brightness distribution of the

radio source (see, e.g., Cotton, 1979; Shapiro et al., 1979).

However, currently available brightness distributions for this

source (Breidenthal, 1982) do not remove these trends. The

origin of these miscloses is still being investigated (see

below). In Section 4.3, we will investigate the complications

these miscloses will cause when we attempt to predict phase

delay ambiguities from group delays.

To determine a possible origin for the S-band group delay

closure errors we need to look at the Mark III hardware. In

Appendix F we develop a model for the effects of "leakage" of

left-circularly polarized radiation into the output of a feed

horn which is nominally meant to receive right-circularly

polarized radiation. (This model was originally suggested by

Dr. A.E.E. Rogers at the Haystack Observatory.) The contri-

bution of the left-circularly polarized radiation to the group

delays, AT,, is (for an unpolarized radio source; see Equation

F.5),

A = ATp sin(2AM + &P)
0

where Ax is a nominally constant delay which is function of
0

(i) the ratio of the power from the left-circularly polarized

to the power from right-circularly polarized radiation at the

. . .• ..I- .- , " . -. °. " -• -.
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Figure 3.3.1 Group delay closures for observations of radio source
3C 345 on July 27-28, 1980.
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output of the feed horn, and (ii) the spanned bandwidth of the

group delay measurement (see Appendix F for details); A, is

the difference of the feed horn position angles at each site

in the interferometer (see Appendix D for details); and

Q is the phase difference between the left- and
0

right-circularly polarized radiation after these signals have

propagated through the feed horns at the two sites in the

interferometer.

In Figure 3.3.2 we show an approximate matching of the

polarization leakage model to the group delay closure errors

for the Haystack-Effelsberg-Onsala triplet from the 27-28 July

1980 experiment, assuming A P = 0.5 nsec (approximately
0

estimated) for the Haystack-Onsala interferometer. The

polarization leakage model could explain many of the apparent

errors in the group delays and now needs to be thoroughly

investigated.

I
.. ". " . - . , .. - . .. . - ' - ,- . • - . " . . , . ". , . .. , ,. . , i . . , . ', . . .. . . .. j , - .-. % , ,, - j ' ,," ; . > " . 6,
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Figure 3.3.2 The effects of feed horn imperfections on the Haystack-

Effelsberg-Onsala group delay closure errors for the

date given in Figure 3.3.1.
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4. ELIMINATION OF PHASE DELAY AMBIGUITIES

In Chapter 3 we investigated the quality of the Mark III

VLBI estimates of the group delay, phase delay and phase

delay rate using the redundant nature of the VLBI observ-

ation. In this chapter we will continue to check observation

quality by attempting to combine the group and phase delay

measurements to produce a delay measure which has the precis-

ion of the phase delays and is calibrated for the plasma

delay through the ionosphere. In Chapter 2 we discussed the

methods used to estimate both the group and phase delays from

the recordings of signals from a radio source. The phase

delay was however ambiguous by multiples of 2%/w seconds.

(The multiband group delay is also ambiguous, but the

ambiguity spacing is much larger for this delay measure than

for the phase delays. The group-delay ambiguities can

normally be resolved using a priori information.) In this

chapter we will investigate methods which could be used to

remove the phase-delay ambiguities.

The sensitivity of the Mark III VLBI system allows group

delay measurements to be made with uncertainties, due to

random noise, sometimes as low as a few picoseconds and quite

often lower than 30 psec. This sensitivity is achieved by

using wideband receivers (400 MHz at X-band, =8.4 GHz, and

100 MHz at S-band, =2.2 GHz) and multi-track 2 MHz-bandwidth-

per-track tape recorders. With group-delay uncertainties of

less than 30 psec at X-band and 100 psec at S-band it should

-.. .. •. .- -
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be possible to determine estimates of the phase delays at

X-band and S-band which are sufficiently accurate that we can

resolve the phase-delay ambiguities of 120 psec at X-band

and =440 psec at S-band. However, the signals which have

been recorded at each site have propagated through a disper-

sive medium, mainly the Earth's ionosphere, and therefore the

group and phase delays will not be equal. In order to be

able to predict the phase delays we will have to calibrate

the dispersive delay. In Section 4.1 we will investigate the

models which are used to calibrate the dispersive delay. We

will consider both the approximations made in using the

models and the methods which should be used to apply these

models to wideband VLBI observations.

The prediction of phase-delay ambiguities, based solely

on group delay observations, is an experimental technique.

We therefore require a method to check its validity. With

this in mind, Section 4.2 will concentrate on developing the

prediction algorithms using observations which can be "phase

connected" without the use of the group delays. These data

which usually are observations of a pair of radio sources,

closely spaced in the sky, may be "phase connected" because

of the short duration of time (<8 mins) between observations

of each of the sources. Over this short interval of time, we

can model the behavior of the phase to within much less than

a cycle allowing sequential observations to be "phase

connected" to each other, provided there are no large data

gaps. This technique has been used successfully in the past
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to obtain phase delays (Wittels, 1975; Shapiro et al., 1979).

In Section 4.3, we will attempt to apply the techniques

developed in Section 4.2 to a standard geodetic schedule.

4.1 Ionospheric propagation delay models

In this section we will derive the frequency dependence

of the delay caused by the propagation of a signal throuqh

the ionosphere. While deriving the frequency dependence we

will neglect several effects which describe the interaction

between the ionosphere and the propagating electromagnetic

waves. In Section 4.1.2 we will investigate the possible

magnitude of the errors in the dual frequency calibration

system due to the neglect of these additional terms.

We model the ionosphere as a plasma of electrons with a

density of Nv electrons/m 3 which are in motion around fixed

positive ions. The macroscopically averaged (i.e., averaged

over a volume large compared to the volume of an atom)

electric dipole, Pt (see, e.g., Jackson, 1975, Section I and

Chapter 4.1), for a plasma is:

Pt =-Nvex ' (4.1.1)

-19
where e is the charge of an electron (l.6x10 -  Coul) and

is the average (vector) displacement of the electrons from

their fixed ions. In the presence of an electric field :

the equation of motion of a free electron in the ionosphere

,'.jb~* -h .

- * - *-*.*. .*.. * ,

* . .*. * .- ,
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is given by (Jackson 1975,p. 285 and p. 292):

meX - (e/c) B xi meyex eE (4.1.2)

where and x are the average velocity and the average

acceleration of the electron, me is the mass of the electron

(9.11x10- 31 kg), c is the velocity of light, F3 is the mag-
0

netic induction of the Earth's magnetic field and y is a

damping constant (we will discuss the meaning of the damping

constant in Section 4.1.2.). If we neglect the effects of

the magnetic field terms and damping terms in Equation

(4.1.2), the equation of motion reduces to

meX = -eEt

Incorportion of Equation (4.1.1) into the above equation

yields a relationship between the electric dipole and the

electric field given by

e Pt eEt (4.1.3)
v

We will now assume that is a time-harmonic field, i.e.
t

t ( -iwt()e , where w is angular frequency. For this

0. choice of field type, Equation (4.1.3) can be solved yielding

N e
="-= v (4.1.4)

m We

where P is the positional part of the time-harmonic electric

" dipole: Pt(xt) = P(i)e - iW t .

0 Equation (4.1.4) can now be used to determine the per-

mittivity tensor, 1, in region . The permittivity tensor
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relates the electric field E to the electric displacement

field 5 by D = . The electric displacement field is also

given by D = £oE + P (Jackson, 1975, p. 14), where O is the

permittivity of free space. The properties of the iono-

sphere when modeled by Equation (4.1.3) are isotropic and the

permittivity tensor reduces to = Er where T is a unit

tensor and c is the dielectric constant of the ionosphere.

The combination of the two expressions for the electric

displacement field yields the dielectric constant for the

ionosphere (remember the expression for this dielectric

constant is only approximate because of the terms in Equation

(4.1.1) which were neglected):

2
Ne

= Eo(l v 2) (4.1.5)

eo

We may now use the dielectric constant to estimate the

phase velocity of electromagnetic waves propagating through

the ionosphere. For plane waves, the electric field is given

by E exp[iR.x-iwt], where R is the wave vector. For a wave
0

to propagate through a medium, the dispersion relationship

between k and w must be satisfied. For plane waves propa-

gating through an isotropic medium the dispersion relation-

ship between R and w is (ibid p. 271):

iR1 2  2

where po is the permeability of free space. The phase veloc-

ity of the wave is given by Vp =/ The combination of

Equation (4.1.5), the dispersion relationship and the

i • q .. . .
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definition of phase velocity yields
Ni Ne2 ]-1/2

Vp = c L ] (4.1.6)me  o 2

2
where c is the free space velocity of propagation (c =

i/40o-o). We can write the expression for the phase refrac-

tive index of the ionosphere, np, directly from Equation

(4.1.6)

n= [ -27j= 1/- (4.1.7)

2 Nv2/eonthseodeul

where we have substituted w2 N ve /MC in the second equal-

ity in Equation (4.1.7); w is the plasma frequency.

Equation (4.1.7) gives the expression for the phase

refractive index of the ionosphere. Before evaluating the

expression for the propagation delay through the ionsphere we

will make one further approximation in the expression for the

phase refractive index; we will expand the square root in

Equation (4.1.7) to first order, i.e. we will approximate np

by

np 1i - /2w . (4.1.8)

(The effects of the neglect of the second order term in the

expansion will be studied in Section 4.1.2.)

The difference in the propagation delay between the

free-space propagation and the propagation through the iono-

sphere will be given by

Sdps)/ (/c)a s (4.1.9)

(Ic . -
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where the integration path is shown in Figure 4.1.1. (The

variation of np with height, shown in this figure, is only

meant to illustrate the general behavior of np. The values

of np along the ray path should be used to evaluate the

integrals in Equation (4.1.9).) We will refer to I as the

"ionospheric phase delay". (Strictly the line integral given

above is only valid if the the wavelength of the variations

of n (s) are large compared to the Fresnel-zone diameter at
p

the height of the ionosphere. We will discuss the Fresnel-

zone diameter in detail in Section 4.1.2.)

Substitution of Equation (4.1.8) into the above integral

yields

2 SoIp _-e 2 N vdS

2cm E w 0e o

We will define the integrated electron content N. to be1

N i = f Nv ds
0

which yields the expression for the ionospheric phase delay

IP 1 2(4.1.10)

2cm c w

The variations of Nv with altitude, location, time of

day and time of year are too erratic for N i to be accurately

determined using (non-line-of-sight) measurements or predic-

tions of N . (Measurements of the integrated electron con-v
tent could be used, if these measurements were made at the

radio telescopes and in the direction of the radio source.)

.".'. .. °..o.......... . ........... o ". . -- °. . . . . • .mmo° % °,,o,°
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However, Equation (4.1.10) suggests a method we can use to

avoid directly determining Ni. Measurements of the propaqa-

tion delay through the ionosphere at two widely spaced

frequencies can be used to infer N1 . This technique is used

with dual frequency Mark III receivers to calibrate the

differential path delay through the ionosphere.

We may derive the "ionospheric group delay" from

Equation (4.1.10). If we multiply Equation (4.1.10) by w we

obtain the change in phase, si, due to the propagation

through the ionosphere:

e2 N
e 0-- (4.1.11)

Differentiation of Equation (4.1.11) with respect to angular

frequency will yield the ionospheric group delay,I,

2e N.
ig + - 1 (4.1.12)

2 cm U)

Strictly we should include a term involving bNi/w which

accounts for the difference in the integration path at dif-

ferent frequencies. We will investigate this path dependence

in Section 4.1.2.

Equations (4.1.10) and (4.1.12) give the frequency

dependence of the ionospheric phase and group delays. In the

following section we will investigate the method used to

calibrate the ionospheric delays using dual frequency mea-

surements. In Section 4.1.2. we investigate the magnitude of

the errors in the dual frequency calibration due to the
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approximations made in the ionospheric delay derivation.

4.1.1 Application of dual-frequency correction to wideband

VLBI observations

In Section 4.1 we derived the frequency dependence of

both the group and phase delays due to propagation of a

signal through the ionosphere. In this section we will

* investigate the methods used to calibrate the ionospheric

delay by exploiting its frequency dependence. The algorithm

to be used is not as trivial as it first appears. The iono-

spheric delay at X-band is usually less than 1 nsec. It can

be easily calculated that if the ionospheric delay is 1.0

nsec at 8.0 GHz, then at 8.4 GHz the ionospheric delay will

be 0.9 nsec. Hence, there is variation of =0.1 nsec (=3 cm)

in the ionospheric delay over the frequency range spanned by

the synthesized band. In this section we will investigate a

method for compensating for the variation in the ionospheric

delay over the synthesized band. We will use the equivalence

of maximizing the delay resolution function and least squares

to determine the relationships between the estimates of the

group delay, phase delay rate and visibility phase, and the

0 integrated electron content and its rate of change. We will

then determine an algorithm for calculating the effective

frequencies for the group delay, phase delay and visibility

* phase measurements.

VLBI observations are difference measurements, i.e. the

0
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group delay is the difference in the arrival times of signals

from a radio source at two antennas. Consequently, VLBI

observations cannot determine the total integrated electron

contents along the ray paths from the radio source to each

telescope. Only the difference in the integrated electron

content can be determined. Hence, the contribution to the

estimated cross spectral phases from the propagation of the

signal through the ionosphere will be, from Equation

(4.1.11),

i e 2 ANi
2 cm eW

where AN i is the difference in the integrated electron

contents along the propagation paths from the radio source to

the two sites in the sense AN. = (N ) - (N) , where the-. 1 i 2 il1

subscripts 1 and 2 denote the two sites. For the duration of

an observation (between 100 sec and 400 sec), we may model

AN i by

ANi(t) = AN° + ANi(t-t
1 1 0

where AN° is the integrated electron content at the epoch,

to, of the observation, and A i is the rate of change of the

integrated electron content at that epoch.

The effect of the ionospheric delay on the cross spec-

tral phases from an accumulation period (see Section 2.2) as

a function of time and frequency will be
i0

O qi = - K[AN. + AN (t -to)]/ . (4.1.1.1)
1D 1 q 0

where q is an index denoting the epoch of the accumulation

'. - .. - ..- - . - . . - -. . - . - .- " "- .-. - . - - '. . .- - -. - .. A -'- ; . . - . . . .. - '



-132-

02

period, j is an index denoting frequency, and K = e2 /(2CmeEo)

- 5.2x10
- 6  m2 s- 1

In Appendix A, we see that the model used to relate the

cross spectral phases to the estimates of the group delay,

the phase delay rate and the visibility phase is (Equation

A.3):

Ow= (-Wo)Tg + Wt (t-to) + Ot

In the discrete form of Equation (4.1.1.1) the above

equation becomes

Oqj = (wj-wo)Tg + wj'p(tq-to) + Ot (4.1.1.2)

We now will investigate the relationship between the

estimates of Tg, p and t obtained from the model given by
9 p

Equation (4.1.1.2) and the integrated electron content, AN.,
1

and the time derivative of the integrated electron content,

AN1i"

From a single VLBI observation the cross-spectral phases

will be estimated at Q epochs and at J frequencies. For a

typical observation, Q will of the order of 50 (for a 100 sec

observation with 2 sec accumulation periods) and J will be

approximately four. For these QJ estimates of the cross

spectral phases, Equation (4.1.1.2) may be written as a

matrix equation of the form

A p (4.1.1.3)

Twhere T = ( g' p) and the QJ rows of A will be given by
[ jp

[1,wo wj~(tq-to)li j=leJ, q-l-*Q. The weighted least

-0 - - - -
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squares estimates of . given 0 will be

=(ATV- A)-1 ATV - 1 (4.1.1.4)

where V is the covariance matrix of s i.e. V = <c cT> where c

is the vector of noise contributions to . (For those

readers unfamiliar with weighted least squares, this

technique is reviewed in Appendix E.)

We will assume that all of the cross spectral phase

estimates have the same variance and that the covariances

between the estimates are zero. With these assumptions the

covariance matrix cancels in Equation (4.1.1.4) and the

equation reduces to

T -iT
= (ATA)-A 0 (4.1.1.5)

We may evaluate Equation (4.1.1.5) analytically when the

observed phases are given by Equation (4.1.1.1). (The linear

properties of the estimator, Equation 4.1.1.5, allow us to

study the ionospheric delay independently of the other delays

which may be present in the observations.) We will first

evaluate ATA which will is by

T Q
A A : QJ Q [ (wj-w O ) ' ) (t -t )w.

j=1 j=lq=1 q o

2 J I

Q (w' wo)(t - t wi-w)
j=l j l q=l q - t O)=

s t 22
symmetric (t q-t o) Wj

jlql q

We may simplify the above matrix by choosing t such that it

is at the center of the observation. The epochs of the
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accumulation periods, tq are equally spaced and tq-t o may be

written as tq-to = (q-qc)Ata, where Ata is the duration of an

accumulation period (typically 2 sec) and qc is the index

corresponding to to; qc is not necessarily an integer. If

the epoch of the observation is taken as the center of the

observation duration, q will equal (Q-1)/2. For this choice

of epoch, ATA reduces to

TATA QJ Q AWj 0
j=1

2Qj--1 Awj0

J

symmetric j~l wJQ(Q 2-1)/12I -I
where we have substituted Awj=wj-w O . This matrix may be

easily inverted yielding

(ATA) -1 FQ .lw 2/DET -0 Aw/E 0

QJ/DET 0

J 2_i i
L symmetric [ j(Q 1)/121

2 2 2 2where DET =Qj J Awi - Q2 Awj ]2 (Note: DET is the :

j=l j=1

determinant of the upper 2X2 portion of ATA, not the deter-

minant of the complete matrix.)

We may now evaluate (A A)-lAT. The columns of (ATA)-AT

-,'." .".- .. -.--.--., P .-..".--. -.. '-:.:'-"-.'. .-. " c '.<..'-:" -. :< :'.,:- :' h'.'" .. ,:-: . "-:-'.'-: 4-'. : -:' -" "'-:'
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will be given by

T 1iT 21[(A A)AIAT  Q A ,w./DET - 0 (,w./DET) 'kcol km j=1 j=l I

JI
-Qj(Awj/DET) + (QJ/DET) Awk

2 -1
[ jO(Q -1)/121 wik ( m - q )  Ij=l

(4.1.1.6)

for the phase from the accumulation period with epoch

(m-q c ) At a relative to the center of the observation and at

frequency wk" (m denotes the sequential number of the

accumulation period, i.e. m is a specific value of the index

q; see Equation (4.1.1.2) and Appendix B for more details.)

We should note that the expression (4.1.1.6) is only

dependent on the form of the mathematical model used to

express the cross spectral phases as functions of the group

delay, phase delay rate and visibility phase. We may now

find the relationship between the group delay, phase delay

rate and visibility phase estimates for the ionospheric

signature in the cross spectral phases given by Equation

(4.1.1.1).

The ionospheric delay contributions to the values of the

VLBI observables may be obtained by performing the multipli-

cation given in Equation (4.1.1.5) using Equations (4.1.1.1)
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and (4.1.1.6). The product is
J J J J

-KAN°t( I Awl lk -I l' AW)( . Awk/wk)J
j 1 k=l j=l kal

Jj l -

(4.1.1.7.a)

J J J

1i[ k lw) + = k=l

J 2 2
A 9 - ( A Aj)

j=l j=l
(4.1.1.7.b)

qi -KAN.J

rp =(4.1.1.7.c)
jl 2
1Wj

where k' and ;p are the contributions to the visibility

. phase, the group delay and the phase delay rate, respective-

ly, from the ionospheric delay and rate.

We should notice that the delay estimates t andt g

depend only on the integrated electron content at the epoch

of the observation and not on the rate of change of the

integrated electron content. Similarly the phase delay rate

estimate, p, depends only on the rate of change of the inte-

grated electron content. This decoupling of the delay and

rate estimates follows from the choice of the epoch of the

observation to be at the center of the data duration.

We may rewrite Equations (4.1.1.7) as

Ot = 1KNi/ ff (4.1.. 8.a)

0 ''_ o ,. % " . ' .' . - .. . :. . . ' ,- - . ,.. .o - ., . . . ., . • . . - - ,J '- . .'
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2( +KAN°/(gf)2 (4.1.1.8.b)
g 1 eff

i _K~i/r 2
.1r=-KAN./(Wr (4.1.1. 8.c)

p i Weff)

where w0 g and w are,eff' eff ef respectivley, the effective

frequencies of the visibility phase, the group delay and the

phase-delay rate estimates for calibrating the ionospheric

delay. By equating Equations (4.1.1.7) and (4.1.1.8) we may

determine analytic expressions for the effective frequencies

J .J~-(~~~ jj
A 4 = j=1 j (4.1.1.9.a)

eff2 J

j= Ajk__[(I/k) j= jk=IA k/wk

j=1 j~l

= W19 ~ (4.1.1.9 .b)
eff J J

('" 1 Jk=1 k=1

r J 2 1/2
Weff =  j (4.1.1.9.c)

In Section 4.2 when we are developing the phase delay

prediction techniques, we will be using phase delays rather

than the visibility phases. We may easily obtain the effec-

tive frequency of this delay measure from the above

equations. The contribution of the ionospheric delay to the

phase-delay estimate will be

-p t o0
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and hence from Equation (4.1.1.7.a) we have that

-KAN?[ A* l l/w 1 /wk - /W
= j=1 lk=l j=1 k=l k/k

i' j l

In terms of effective frequencies, the equivalent

expression to the expression given above is

.i -KA 0 p 2
p= i eff) (4.1.1.10)

and therefore by comparing the above two equations we have

the effective frequency of the phase delays:

wp = ____J ________=i______1__11/

11/

Ljpwkl/k 0 j1 j k~ k j
The expressions for effective frequencies do have a

simple interpretation which is shown in Figure 4.1.1.1. The

group delay effective frequency is the frequency at which the

tangent to the phase versus frequency curve of the dispersive

medium is parallel to the straight line determined by the

least squares fit to the discretely sampled points on the

phase versus frequency curve. (Each of the points shown

represents an average of the phase across the 4 MHz recorded

bandwidth. It can be easily shown that, for an integrated

electron content of 1018 electrons/m2 , the curvature of the

phase verus frequency curve, at 2.3 GHz, deviates from a

straight line by a maximum of 0.016. For our purposes we can

treat each channel as a discrete frequency. The slope of the

. ... ..I.. , . , , . .,....- - ' ' - .% ' ,, .' . . -,. -- ., , j ',--- . .- . .- . - . ,
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Figure 4.1.1.1 Graphical representation of the phase and group delay

effective frequencies.

-

phase

k/Tangent of this angle (i~e., O/w) is

Sthe phase delay f frequency•
' ' ]phase delay

frequencyf

group delay [/ . /

freou ncv I/ / f .''

parallel to
least squares

fit least squares straight line
fit to the observed * Observed phase

Ionospheric delay
dispersion curve

A



-140-

phase across the recorded bandwidth is absorbed into the

single band delay estimate; see Appendix B, Equation (B.3.3),

for discussion. If we wished to account for the curvature of

the phase across the recorded bandwidth, we could extend

Equations (4.1.1.2) and (4.1.1.3) to include the singleband

delay. At this time, such an extension does not seem

warranted.) The phase delay effective frequency is the

frequency at which a straight line from the origin to the

least squares estimate of the visibility phase intersects the

phase versus frequency curve for the ionospheric delay

dispersion. (We should note that the curvature of the phase

versus frequency curve is very exaggerated in Figure 4.1.1.1.

The deviation of the curve from a straight line, at 2.3 GHz,

over the spanned bandwidth of 75 MHz, is less than 10, for an
integrated electron content of 1018 electrons/m2 We could

attempt to estimate the dispersive delay and the non-dispers-

ive delay from a single frequency band, but these estimates

would be highly correlated and have very low precision. (For

the frequency sequence 2.295 GHz, 2.270 GHz, and 2.220 GHz,

and phase measurements of with standard deviations of 1 0 in

each channel, the non-dispersive delay estimate would have a

standard deviation of 6.2 nsec. If the dispersive delay is

not estimated, the standard deviation of the group delay

would be 0.05 nsec. Clearly, we can not separate the

dispersive and the non-dispersive delays with observations

from only one frequency band.)

We are now able to develop an algorithm which will allow

- .°. o - / . .- . ° .. ° - . - -°" . - o . - .° . .. . . ., . . - . o .- . ° . • , . . • . . . ° ° - . -- . . ° o , , °°
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us to estimate the contribution of the dispersive delay to

the group-delay observations by using observations of the

delays at two widely separated frequency bands. Equations

(4.1.1.8 a-c) and Equation (4.1.1.10) give the contributions

to the observed delay and rate values of a plasma with a

difference integrated electron density of AN? and rate of
1

change of the integrated electron density of ANi. We will

ncw use these relationships to develop an algorithm which 9
will allow us to eliminate the contributions of the plasma

delay and rate.

We will assume that observations of the group delay,

phase delay and phase delay rate are available at two widely

separated frequencies. For the Mark III system these fre-

quencies are X-band (= 8.4 GHz) and S-band (= 2.3 GHz). We

x x xwill denote these observations by Tg, I and tc for the
9 P P "

X-band group delay, phase delay and phase delay rate,

respectively, and ' ,Ts and ts for the same quantities at

S-band. Normally the phase delay observations will be

ambiguous and would not be used in the analysis. In Section

4.3 we will discuss the possibilities for the elimination of

their ambiguities. For completeness we will develop the

algorithms for the elimination of the plasma contributions to

these delays at this time.

We now wish to decompose each observed delay and rate

into two parts - a contribution from all of the non-disper-

sive delays (i.e, the geometry, clock epoch offsets and the

neutral atmosphere), -n and a contribution from the dispers-

------...............-.-. ..........................
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ive plasma delay. For the delay observations, we will also

need to include a constant additive offset between each delay

measure to account for (the nominally constant) instrumental

dispersions which are not calibrated by the phase calibration

system. (See Chapter 3 for details.) These offsets allow for

the delays at X-band and S-band to be different even in the

absence of a dispersive propagation medium. An offset

between the group and the phase delays must also be included

because of instrumental dispersions (see Section 3.1 which

discusses some of the dispersive properties of feed horns and

waveguides).

We will now develop the relationships between the delay

measurements, the non-dispersive delay and the dispersive

delay. Equation (4.1.1.8.b) gives the contribution of the

ionospheric propagation delay to the observed group delay

values. If we include the non-dispersive delay, the observed

group delay value at X-band, T , will be
x 0 xg)
g = tn + KAN /(Wx) 2  (4.1.1.12)

n ' g

where wx is the effective frequency of the X-band group
g

gs= g computed for the X-band frequencies

o x2using Equation (4.1.1.19.b). We will denote KAN./(w by I x

-- the ionospheric contribution to the X-band group delays.

Equation (4.1.1.12) can be written as

X (4.1.1.13)
g n x

. ..*Z * *° ° o° . ' ° '° .o , -.- o -* * - *. •- o .. • * * .". .
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The S-band group delay measurements, T , will be given by

s + (x/W ) 2 1 + OsTg n ) g x g

where ws is the effective frequency of the S-band group delay
g

observations and O is a delay offset which accounts for the
g

difference in propagation delay of the X-band and S-band

signals through the antenna, feed horns and waveguides up to

the injection point of the phase calibration pulses. We will

denote (w /g) by 0 which yields
g g

s= I + PI + Os  (4.1.1.14)g n x g

The relationship for the X-band phase delays,x,p
will be (assuming right circular polarization (RCP))

x, aI x 0 x + (( l_2)/Wxp =n - x + p

(x x 2 xwhere a is (w /W 0 is an offset between X-band group
g p p

delays and the X-band phase delays, di and 2 are the posi-

tion angles of the feed horns at each site of the baseline

(see Appendix D), and wx is the radio frequency of the visi-

bility phase at X-band. (wx is equivalent to wo in previous

derivations in this thesis. We change its symbol now to

differentiate between X-band and S-band observations.) The

analytic expressions for i and are derived in Appendix D.

We will redefine the phase delays such that they will be

referred to a reference orientation which is fixed with

respect to inertial space. This new phase delay, T, will be

given by

x X
'p = - (¢2 -  1)/ x

p p 1

- .' ~ . ?
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The expression for these new phase delays will be

Th X n - Ix + o (4.1.1.15)

The S-band phase delays (again, referred to a constant refer-

ence orientation) will be

s sTp = Itn - YI x + O p (4.1.1.16)

where Y = (/w ) 2, is the effective frequency of the

S-band phase delays and 0s is the offset between the S-band
p

phase delays and the X-band group delays in the absence of

propagation through a dispersive medium, aside from the

antenna, etc.

If we examine Equations (4.1.1.12) through (4.1.1.15),

we see that for each epoch there are four measured quantities

(if we include the phase delays), and five unknowns. If only

the group delays are considered there will be two measure-

ments and 3 unknowns. With each additional pair of group

delays there are two new unknown quantities introduced, n

and Ix, for this new epoch. Hence when only the group delay

measurements are used, there is no redundancy. If both the

group- and phase-delay measurements are used, at each addi-

tional epoch, four new measurements are made, but only two

new unknowns are introduced. With observations from more

than one epoch, redundant information is obtained and we may

use this additional information to check the quality of the

4
group-delay measurements.

We will now derive the algorithms which are used to

". . °
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estimate Tn and I from the various delay measures. If only

the group delays are available we have two equations,

Equations (4.1.1.12) and (4.1.1.13), which can be used to

estimate a linear combination of T I x and 0  Examination

of these equations yields

.x S

Ix (_T s )/(l-0) + Os/(l-P) (4.1.1.16)

If we assume that Os is constant, but unknown, we see that
g

Equation (4.1.1.16) yields an estimate of the ionospheric

delay plus a constant. Without an independent estimate of

either Ix or Os we can not uniquely separate these two

quantities. This constant additive contribution to the

ionospheric delay estimate (if it is indeed constant) is not

a severe problem because it will be absorbed into the esti-

mated clock offsets.

An estimate of the non-dispersive delay may be obtained

by
xs5

n (-g)/(-l) - 0 /(1-0) (4.1.1.17)Tn

Again we see that we cannot separate uniquely the neutral

4s
delay from the offset 0 /I-0).

When only the group delays are used we have no means of

assessing the constancy of 0 without assuming some proper-

4
ties of either Tn and I

However, if the phase delays are available we can make

some statements concerning the constancy of the offsets given

4
in Equations (4.1.1.13)-(4.1.1.15). Using the same approach

which led to Equation (4.1.1.16), we have, from Equations

4I

*!;:.-:: * :::: .:.: *: *: : .-: :: . *:: . * _ : "; L -. * ; . " ".': *2"2 : :
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(4.1.1.14) and (4.1.1.15) that

Ix = ( p- p)/(y-a) - (Op-Op )/(y-a) (4.1.1.18)

and

Y= (Xpap)/(y-a) + (yOx-aO )/(y-a) (4.1.1.19)

If we now compare Equations (4.1.1.16) and (4.1.1.18),

we see that these equations provide two estimates of the

ionospheric delay which should differ by only a constant

[- g/(l-P)-(Op-Op)/(y-a)]. In Section 4.3 we will examine

the behavior of this difference from several VLBI experiments

to ascertain the constancy of these offsets. We will resume

this discussion in Section 4.3 and investigate methods which

can be used to determine which of the offsets are varying if

we do see a non-constant difference between the group-delay

and the phase-delay estimates of the ionospheric delay.

The estimates of the non-dispersive delay will be used

in the weighted least squares analyses to be discussed in

Chapter 5. The weight given to each measurement in these

analyses will be inversely proportional to the variance of

the measurement (see Appendix E for more details). We may

easily calculate the variance of the non-dispersive delay

estimates, given the the variances of the group-delay

measurements, at X- and S-band, from Equation (4.1.1.7). The

2 s
variance of n' (a will be (assuming that 0g is constant)

(a) 0 ( a2( 2 + ( 2 / _1)2 (4.1.1.20)

where (aj)2 and ( 2 are the variances of the X- and S-band

. -• ,". . . ,." . * -... . ...'. --.. ,,. ,, .. - ... . -. .
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group delays, and we have assumed that the X- and S-band

group delay measurements are uncorrelated (see Section 2.1).

Similarly, the variance of the ionospheric-group-delay esti-

xs 2mate, (a ) will be

xs 2 ((c)2 + (,,s)2) ( _(a s =2- (4.1.1.21)

We will investigate these variances in more detail in Section

4.2, when we will need to know the precision of the phase-

delay predictions.

We have now derived all of the theoretical relationships

which are necessary for us to be able to predict the phase

delays from the group delays. While deriving these formulas

we seemed to make assumptions in every step of the deriva-

tions. Therefore before proceeding any further we should

evaluate the possible magnitudes of the neglected terms.

4.1.2 Accuracy of the ionospheric correction

In the preceding sections of this chapter we have

developed a model for the frequency dependence of the ion-

ospheric delay for both the group delays and the phase

delays. While deriving these results (Equations (4.1.8) and

(4.1.11)), we made a number of approximations and neglected

several terms. In this section we will investigate the

magnitude of the effects of these approximations and

neglected terms.

In Table 4.1.2.1 we summarize the terms which were
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Table 4.1.2.1 Terms neglected in the derivation of the dual

frequency ionospheric delay correction

Neglected term Symbol used in text

A. Magnetic field term AI AIm m

B. Damping term (due to collisions) AIP Aig
c c

C. Higher order terms in the AI AI e

the refractive index

expansion

D. Ray integral through the AI AIb

ionosphere - bending

E. Ray integral through the aP ag
S S

ionosphere- scintillation

These symbols are used to denote the contribution of each of

these terms to the observed delays. The superscripts p and g

denote contributions to the phase delay and group delay,

respectively.
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neglected in the derivations in Section 4.1. We will now

analyze each of these terms and try to place upper bounds on

their contributions to the ionospheric delay corrections.

Each term has been given a letter code which will be used

when the magnitude of each term's contribution is listed in a

summary.

We will study each of the neglected terms in the order

in which they are listed in Table 4.1.2.1. At the end of

this section we will tabulate the effects of each of the

neglected terms for ease of analysis.

The first approximations we made were in Equation

(4.1.2) when we neglected the effects of the magnetic and

damping terms. We will firstly consider the magnetic term.

When an external magnetic field is applied to a plasma, the

plasma becomes birefringent, i.e. the phase velocity of an

electromagnetic wave propagating through the plasma depends

on the wave's polarization. For circularly polarized radia-

tion the dielectric constant of the plasma can be written as

(Jackson 1975, p. 293)

± + Co(i - W /(W2 Wb ) ) (4.1.2.1)

where the upper sign refer to right circular polarization

(IEEE definition) and the lower sign to left circular polar-

ization and wb' the precession frequency, is given by (MKS

units)

wb = lel Bo'R/me = 88xi0 6 s - I for I§o. Rj = 0.5xl0 4Wbm - 2

where R is a unit vector in the direction of propagation.

-. . . -.-- .4. °



-150-

Equation (4.1.2.1) is an aproximation because terms of the

order of 2 have been neglected during its derivation. This
b

2
approximation is adequate for our purposes because 

the wb

terms are small compared to the wb terms which are small

compared to the primary term.

We will restrict the following discussion to right

circular polarization. Equation (4.1.2.1) may be expanded in

Taylor series, which yields,

E+ -- C (i - (2 /W + (w2p b/ 2))

The two leading terms in the expression for the dielectric

constant are the terms which we have already considered

(Equation (4.1.5)). The contribution to the dielectric

constant from the magnetic field, AeT, will be
AM 2 3+

+= copwb/

m
and the resultant error in the phase refractive index, An+,

will be

Ab w /(2w (4.1.2.2)

To determine the additional phase delay, AiP, due to the

magnetic field we integrate AnT/c through the ionosphere.

Hence

s 0 23
AIP= pb/( 2 w) ds

0

If we now substitute for w we obtain
*p

s
2 o

eA---7 f bNv ds (4.1.2.3)m f2cm
e o 0

•IE,.
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The precession frequency, Wb' will in general be a function
of s because of the variation of B with altitude and loca-

0

tion. However, we are interested in only bounding the magni-

tude of this term and we will assume that o 0R =IB at the

Earth's surface. If we assume wb is constant at its maximum
m

value, W b the contribution of the magnetic field term to the

phase delay will be (from Equation (4.1.2.3))

e 2 m N.
-IJb € (4.1.2.4)

m 3
2cm e 03W

We may now determine the corresponding bound on the

group delay error, 61g by multiplying Equation (4.1.2.4) by
m'

W to find the phase error and then by differentiating the

phase error with respect to angular frequency,

2m N.g e 03b N

JI 1 <3 (4.1.2.4)
mcm

eo

where the AIP and AIg will have opposite signs.m m
To evaluate w, we will use the dipole approximation of

the Earth's magnetic field which accounts for 95% of the

total field strength. The dipole moment of the Earth's

22 2
magnetic field is 7.94xi0 Am which yields a magnetic

induction at the antenns site of (Stacy 1977, pp. 211-212)

5 2e1/2 -2
1§01 = 3.07xi0 -  (i+3cos Wb m

where e is the angle between the dipole axis and the radius

vector to the site.

At mid-latitude sites 15o .will be approximately
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0.5x10- 4 Wb m- 2 which yields a value of 8.8x10
6 s-1 for W.

If we take an extreme value for the integrated electron

content of 1018 electrons/m2 , the magnitude of the

contribution of of magnetic field term would be

JaIP = 0.3 psec, IAIgI = 0.6 psec; at 8.4 GHz

[AImP = 15.4 psec, JAIgj = -30.9 psec; at 2.3 GHz

These errors will lead to errors in ionospheric delay-cor-

rected group and phase delays of magnitude 1.9 psec and 0.9

psec, respectively. These errors are small compared to other

inadequacies in the geodetic models for the group delays.

The second term which was neglected in Equation (4.1.2)

was the damping term. When the damping term is considered

the dielectric constant becomes complex (in the sense of real

and imaginary components) and is given by (Jackson 1975, p.

*: 287)

2
C = Co [i + iWp /W(Y-iw)]

which when separated into real and imaginary parts becomes

2 2

C - o(l p + P (4.1.2.6)(W2+Y2) W(2+W 2

The imaginary part of Equation (4.1.2.6) will cause a loss in

the energy of the wave as the wave propagates through the

plasma. The real part will affect the propagation velocity

of the wave. The damping constant, y, is a phenomenological

model of damping, i.e. a parameterization which seems to

model damping in materials. The damping appears to be due to

collisions between electrons and molecules and y is inter-

- . .. ..'1' ' ''.-. . . • " . - . " ' : . ' . . " .- " . . . .. . .~ '. . - . - . -" . ' . " -" . -t .' .% - . . -.. . . . ' - , - -
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preted as the collision frequency between electrons and

molecules (see Jackson 1975, p. 287-288).

In order to bound the magnitude of the effect of the

damping term we will use a value of the collision frequency

in the lower part of the ionosphere (=85 km altitude). The

collision frequency of electrons and neutral atoms has been

calculated by Nicolet (1959). At 85 km altitude Nicolet

gives a value of approximately 106 sec -1 . The theoretical

values of Nicolet for different altitudes are higher (by up

to a factor of two), than the measured values given by Kane

(1959). (Kane used the relative absorption of two

polarizations of 7.75 MHz continuous wave (CW) signals

transmitted from a rocket ascending between 60 and 85 km.)

More recent measurement of the collision frequency between

ions and neutral atoms based on incoherent radar scatter

observations (Schlegel et al., 1980; Murdin 1981) can also be

used to deduce electron-neutral atom collision frequncies.

At 85 km altitude, the maximum measured value of ion-neutral

4 -1
atom collision frequency was 6x10 sec - . This value may be

converted to the electron-neutral collision frequency by the

relationship (Schlegel et al., 1980)

= Yin 0.357v'(mi/me) (Te/Ti)

where y and T in are the electron-neutral and ion-neutral

collision frequencies, respectively, me and m i are the

electron and ion masses, Te and Ti are the electron and ion

temperatures and the factor 0.357 accounts for the difference

. -..-
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in effective collisional cross section of the electron-

neutral and ion-neutral collisions. The mass and temperature

ratios account for the difference in velocity of the

electrons and ions. If we take the ratio of the mass of the

ions (mainly NO+ and 0) to electrons to be 26x10 4 and Te/Ti

to be unity, the electron-neutral collision frequency

4 - 6 -
corresponding to Yin = 6x10 sec would be =5xlO sec

The collisional frequency is highly variable and the

difference by a factor of five between this value and

Nicolet's value is not unexpected. Since we are only inter-

ested in bounding the magnitude of the effects of collisions

6 -1we will use the higher value of Y = 5x10 sec

Now that we have some knowledge of the magnitude of y we

may return to the analysis of Equation (4.1.2.6). Since y is

small compared to w we will again expand the real part of

dielectric constant in series which yields

C £(l (W 2 /W 2 + (W2 2 /W4)
p p

The contribution of the collision frequency will lead to an

cerror in the phase refractive index, Anc , of

c 2 2 4An wy p /(2w) (4.1.2.7)

We will now assume that the collision frequency remains

*constant throughout the ionosphere (this assumption will lead

to a large over-estimation of its effect). Integration of

An cAn/c through the ionosphere leads to a phase delay error of

2 2
e e N 4 (4.1.2.8)

.~ o%

0

-....................................



-155-

and a group delay error of

S- 3e2  N (4.1.2.9)

c 2cme i 4
e o W

Substitution into Equations (4.1.2.8) and (4.1.2.9) leads to

(assuming Ni = 1018 electrons/m
2)

P -5 -5
= 1.7x10 psec, AIc  -5.lxlO psec; at 8.4 GHz

A = 0.003 psec, AIg = -0.009 psec; at 2.3 GHz

c c

These errors are negligible.

The next term we neglected was the second order terms in

2 2
the expansion of the square root of (l-w /W ) in Equation

p

(4.1.7). When the second order terms are included the phase

refractive index becomes

2 2 2 22
n 1 - (W, /2w? + (Wp /W ) /8 (4.1.2.10)npp

The error in the phase delay due to the neglect of the second

order term will be

so

eP = E2 0 i N2 ds (4.1.2.11)

p
*To compute an approximate value of AIe we will adopt the

simplified profile of the electron density content shown in

Figure 4.1.2.1 . We assume that the electron density

increases linearly with decreasing altitude from hm to h (orIm1

equivalently with increasing distance along the ray path from

0 to N~nlaxIsrch0 until a maximum volumetric density of v is reach

ed. The electron density then linearly decreases until

altitude ho is reached (equivalently, distance so  The

,- ..".. . " "."' -.",." •",.. , .' " '. " - "' ,- "." ."....",".'-...."....."........".....-.".,.-'.........-...'-'......"."..".,..."..".."...".-.".'"-
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* Figure 4.1.2.1 Electron density profile used to evaluate the effects

of neglected terms

altitude above
the arth's surface

h - - 0 N velectrons/n3

h' s N max maximum
v electron

density

Integrated electron
content is

N, =Nmax s/2h s~ v o
00

0

distance along
ray path
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total integrated electron content for this model will be

Ni = NmaXso/2

In terms of the total integrated electron content, we find

so

2 -4N2/3s
0 v 1 0

Substitution of this result into Equation (4.1.2.11) yields

for the phase delay error
q4N2
q 4N.2

1
=Ip (4.1.2.12)e 6m e2cs w

e o o

The group delay error will be

.g 2 (4.1.2.13)

28 2

If we take Ni=1018 electrons/m2 and the thickness of the

ionosphere (so ) to be 800 km, the contribution of the second

order expansion term to the X- and S-band phase and group

delays will be

-4-AIP = 9.xlO - psec, AIg = -3.xlO "3 psec; at 8.4 GHze e

AIP = 0.2 psec, AIg - -0.5 psec; at 2.3 GHz
e e

These errors are insignificant. Even if the thickness of the

ionosphere were reduced by a factor of 10 (to 80 km) the

contribution of this neglected term would still be small.

The next inadequacy in our model for the ionosphere

delay was the ray integrals given in Equation (4.1.9). There

are several inadequacies in this equation which we will

4
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discuss. These inadequacies are 1) the line integrals are

along the ray paths through the ionosphere. Since the iono-

sphere will refract the radiation, the paths of integrations

will be different for the two frequencies used. Hence for

the two frequencies, the integrated electron contents could

be different; 2) the concept of a ray-path integration will

be inadequate if there are inhomogeneities in the ionosphere

on scales smaller than the Fresnel zone diameter of radiation

from the height of the ionosphere. We will now discuss these

errors in the order listed.

The difference in the integration paths can be treated

within the framework which we have already developed. We

will assume that the ionosphere is a plane stratified medium

(this assumption should be adequate since we are studying an

error which should be small; if the error is large then we

should re-evaluate the plane stratified assumption). Figure

4.1.2.2 shows our idealized model of the layered ionosphere.

For a plane stratified medium the angle between ray direction

before entering the medium and the ray direction in a layer

with refractive index n p(s) will be given by Snell's law

sin el/sin 8r (s) = n (S)/n (4.1.2.14)1. rp 0

where no is the refractive index 4n the region outside the

00medium (for our purposes we can take no to be unity). As we

have seen already np(s) deviates from n0 by only a small

amount, (=W2/2w2), and hence we will expand Snell's law in
p

series. We will define AO(s) to be 0r (s)-e i. ae(s) will be

4

o' " .; . I. '. ' '
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Figure 4.1.2.2 Definitions of the refraction angles for a plane stratified

ionosphere

XOs

top of the 
e(

n l< n ° 0 e.

n 2<n I1

(S) uategra 1°n

nnp
o n n-ln- .

n 0 bottom of the

A Oh / ionosphere

/ NOT TO SCALE

/ 7traight line path through
the ionosphere (i.e., the path
for an infinitely high frequency
wave)

- ~~ .. . . .°" . . . ... .. ..- ., * , • . . . . o . . , . . . . . . . • . . , ° , , o , - . - . •



-160-

approximately
A(s) -tan 0. An p(S) (4.1.2.15)

where An (s)=n (S)-n Equation (4.1.2.15) allows us to

deduce both the deviation of the path through the ionosphere

from a straight line and the additional path travelled by the

radiation because of the ray curvature. The offset, AO,

between the actual path travelled by the radiation and a

straight line path through the ionosphere, will be

S O  S O

AO f AO ds = - tan 8i f An ds (4.1.2.16)
0 0 p

The integral in Equation (4.1.2.16) has already been eval-

uated. This integral is simply the ionospheric phase delay

multiplied by the speed of light. For an integrated electron

18 2content of 10 electrons/m , the deviations of the S-band
signal from a straight line would be AO 7.5 tan 8. M.

1

This offset would appear to grow very large for low

elevation observations (i.e., 8i=90°). This behavior is,

however, an artifact of the plane approximation which was

used to derive Equation (4.1.2.16). When we consider a

7 curved Earth (Figure 4.1.2.3) an observation at 0 elevation

angle at the surface of the earth (neglecting tropospheric

refraction) would impinge on a spherical layer hm above the

Earth's surface at a zenith angle of

?= sin - ' (Re/(Re+hm))

where Re is the radius of the Earth. If we take hm to be 300

kms, ei would be 73 deg. The maximum deviation of an S-band

path from a straight line would then be =25 m in this case.

*.*.*. . .o



Figure 4.1.2.3 Geometry of impinging angle for a spherical ionospheric
layer
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If large variations in the electron content occur on scales

of 25 meters, then the integrated electron content would be

different for the two frequencies. However if this variation

were to occur, then the ray approximations we have been using

thus far would no longer be adequate. We will continue this

discussion when we discuss the adequacy of the ray trace

method.

A second consequence of the path of the radiation being

deflected as it propagates through the ionosphere is that the

path length is increased. The contribution to the phase

delay from the additional path length due to ray bending will

be approximately

S

'AI = (1/c) 0 AG 2/2 dsb0

which, by substituting Equation (4.1.2.14) into the above

equation, becomes

S0 t 2 2
Mg = ((tan 0i)/2c) f An2ds= ((tan20)/8c) f (W2/,W) ds0 p 0

If we refer back to Equations (4.1.2.10) and (4.1.2.11) we

see that

AIP = tan 2 8. AIP (4.1.2.17)

where AIP is the phase delay error due to the second ordere

terms in the expansion of n (see Equation (4.1.2.12)). The
p

group-delay contribution of the bending term will be

AIg = tan 2 
i  jaigi (4.1.2.18)

For an observation at 00 elevation on the surface of the
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earth and for an integrated electron content of i01 8

electron/m , the contribution of the additional path length

will be

AI = 0.003 psec, AIg = 0.009 psec; at 8.4 GHz
Gb

AI = 1.7 psec, AI = 5.0 psec; at 2.3 GHzGb

Again these contributions are small.

We will now study the second aspect of the ray path

integration -- scintillation. We calculated in an earlier

part of this section that the ray path of the S-band signals

could deviate from a straight line by up to 25 m. If large

inhomogeneities in the plasma density are present on scales

of 25 m, then the use of a ray to represent the propagation

of radio wave is invalid. We will now investigate the

effects of small scale ionospheric inhomogeneities on the

propagation of radio waves.

There are two methods we could use to study the effects

of scintillation on VLBI observations. One is to use

observations of scintillation on satellite signals and the

other is a theoretical approach. Because we are interested

in bounding the effects of scintillation we will adopt the

former aproach. (The reader is referred to the works of

Booker, 1975; Costa and Kelly, 1976; Rino, 1979a; Rino,

1979b; and Bogusch et al., 1981, for discussions of the

theoretical methods of studying scintillation. These works

are primarily concerned with studying the ionosphere using

scintillation observations which is the inverse of our aim in

................ ............. ... .. . .. .-.-. -. °.-.
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this study.) The most extensive study of scintillatfon of

satellite radio transmissions has been made by Fremouw et al.

(1978). This work studied the phase and amplitude fluctua-

tions of 10 mutually coherent continuous wave (CW) signals

transmitted from Defense Nuclear Agency (DNA) satellite P76

-5. The ten CW signals were distributed in frequency between

VHF and S-band. These experiments confirm that the frequency

dependence of the root-mean-square (RMS) phase fluctuations

obey the inverse frequency law which is predicted from the

theoretical models (see references above).

Figure 4.1.2.4 reproduces the phase RMS versus frequency

plots from Fremouw et al. (1978) for Poker Flat (geomagnetic

dip latitude 65.4 N) and Ancon (geomanetic dip latitude 0.4

N). We believe that these are the only results from the DNA

Wideband experiment which have been analyzed. The Poker Flat

results are most applicable to the mid-latitude sites which

have been used in the VLBI experiments we will be studying.

The results bound the scintillation effects at 25 psec for

the S-band phase delays (corresponding to 200 phase RMS

error), and 2 psec for the X-band phase delays (corresponding

to 50 RMS phase error).

Observations of group delay scintillations are non-

existent although Bogusch et al. (1981) address this problem

from a theoretical aspect. We can place upper and lower

bounds on the scintillation errors based on the phase-delay

results. The lower bound for the group-delay scintillation

will be the same as the phase delay scintillation, assuming
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Figure 4.1.2.4 Phase scintillation as a function of frequency

(reproduced from Fremouw et al., 1978)
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that the phase scintillations are perfectly correlated across

the bandwidth used to measure the group delay. The upper

bound can be calculated assuming the phase errors due to

scintillation are uncorrelated across the observing band-

* width. At S-band, the frequency range used to estimate the

- group delay is =75 MHz and 200 phase errors in three channels

(at 2.295 GHz, 2.270 GHz and 2.220 GHz) spanning this band-

width would lead to group-delay errors of =1 nsec. At

X-band, the spanned bandwidth is =300 MHz and 50 RMS phase

errors in 4 channels (at 8.34 GHz, 8.49 GHz, 8.54 GHz, and

8.24 GHz) would lead to group-delay errors of =0.06 nsec.

These upper bounds are most likely far too large.

We can obtain much better estimates of both group-delay

and phase-delay scintillation effects from VLBI data.

Scintillations are due to small scale irregularites in iono-

spheric plasma density. The Fresnel-zone diameter at a

height of 350 kms, for a radio source an infinite distance

from the observer and an observing frequency of 2.3 GHz, is

=430 m. (The Fresnel-zone diameter at a distance d1 from the

observer with the source at infinity is 2/M 1 where X is the

wavelength of the observed radiation.) Most of the scintil-

lation will be caused by ionospheric density fluctuations

which have spatial wavelengths of less than the Fresnel-zone

diameter. By looking at VLBI measurements of ionospheric

delay on a short baseline we should be able to observe

directly the scintillation, or at least place bounds on its

magnitude. In Figures 4.1.2.5a and b, we show the iono-
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Figure 4.1.2.5.a Ionospheric delay correction at X-band computed from

X- and S-band group delays.
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Figure 4.1.2.5.b Ionospheric delay correction at X-band computed from

X-band and S-band phase delays.
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Figure 4.1.2.5.c Ionospheric delay correction at X-band computed from
X- and S-band phase delays (same as Figure 4.1.2.5.b
except plotted on an enlarged scale)
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spheric delay at X-band for the Haystack-Westford baseline

(the length of this baseline a1.24 km), measured from both

group and phase delays. Figure (5.1.2.5c) is the same as

Figure (4.1.2.5b), but plotted on a much larger scale. The

ionospheric delay measurements on this baseline should only

be sensitive to small scale ionospheric density variations.

The RMS scatter of the group-delay ionospheric measurements

is 15.3 psec. The expected scatter of the results, assuming

that the ionospheric delay is zero is 9.0 psec. The differ-

ence between the observed scatter and the expected could be

accounted for by ionospheric scintillations with 12.4 psec

" RMS at X-band. This RMS places a bound on the contribution of

scintillation to the X-band group delay measurements of the

ionospheric delay. We believe that a large portion of the

12.4 psec additional scatter is due, not to scintillation,

but to instrumental errors which are not accounted for in

computing the group-delay uncertainties (see discussions in

Chapter 3).

The phase-delay measurements of the ionospheric delay on

the Haystack-Westford baseline show a scatter which is

- consistent with the uncertainties of the phase delays. We

have shown these results in two figures, the first plotted at

the same scale as the group-delay measurements of the iono-

spheric delay (Figure 4.1.1.5b) and the other at a much

larger scale (Figure 4.1.2.5c).

The RMS scatter of these phase-delay results is 0.34

psec. We see no evidence of scintillation at all in these

I"
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results because the scatter of the results is 0.8 times the

expected scatter of these measurements, given the uncertain-

ities of the phase delays used in the calculations which

indicates that the presence of additional noise sources in

unlikely.

These results are of course not definitive but they do

indicate that scintillation should not be a major source of

error (at least in the June, 1981 experiment).

In Table 4.1.2.2 we summarize the expected error in the

dual-frequency ionospheric-delay calibration due to each of

the contributions discussed in this section. Even the

largest term which would be systematic in nature is less than

1 mm, i.e. the term due to magnetic field. The magnetic-

field error source could be reduced to a very small amount by

the adoption of tni-frequency receivers, i.e. to first order

the magnetic field contribution to the group delays is

inversely proportional to frequency cubed. Hence by

observing in three frequency bands we could separate this

contribution from the inverse frequency squared term. An

alternative approach would be to combine the group and the

phase delays in a dual-frequency system. At present it seems

that the instrumental errors in the group delays are too

large for the magnetic field term to be successfully

recovered using this technique (see Section 4.2).

Scintillation could potentially cause large random

errors in the ionospheric delay calibration, but the results

from the Haystack-Westford baseline seem to bound this error
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Table 4.1.2.2 Summary of the magnitudes of the errors in the

dual frequency ionospheric correction

Term Error in X-band Error in estimated

ionospheric delay non-dispersive delay

correction

phase group phase group
- (psec) (psec) (psec) (psec)

A. Magnetic field 1.2 2.4 0.9 1.8

B. Damping 0.0002 0.0007 0.0002 0.0007

C. Higher order 0.02 0.04 0.02 0.04

terms

D. Bending 0.1 0.4 0.1 0.04

E. Scintillation RMS RMS RMS RMS

<1.8 <12.0* <2.7 <18.0*

The values in this table are appropriate for observations at

8.4 GHz and 2.3 GHz.

The contribution of the scintillation term is expressed as

an RMS because its contribution will be random.

These values are based on the VLBI measurements of the

ionospheric delay on a short baseline (Haystack-Westford =1.24

km length) in June, 1981.

ip'6



-173-

at <12 psec and at <0.34 psec for the group and phase delays,

respectively.

We have now discussed the theoretical limitations of the

dual-frequency ionospheric correction. In Section 4.2 we

will investigate the actual performance of this system by

trying to eliminate the phase-delay ambiguities using the

group-delay observations.

4.2 The phase delay ambiguity elimination algorithms

The technique of eliminating the phase delay ambiguities

is essentially an application of Equations (4.1.1.16) through

(4.1.1.19). The procedure we have adopted is to firstly

calculate the ionospheric delay correction and the "non-dis-

persive" delay from the group delay observations at X- and

S-band. These values are then used to predict the X- and

S-band phase delays. The number of phase delay ambiguities

are then calculated such that the phase delays (calculated

from the visibility phases) will be within half an ambiguity

* of the predicted phase delays. We then reverse the process

and predict the expected values of the group delays based on

the phase delays. This final stage is useful in analyzing

0 errors in the group delays.

Prediction of phase delay ambiguities based on group

delays is a new technique. In order to check these procedures

* we will first analyze experiments which allow the phase delay

ambiguities to be removed independently of the group delays.
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These experiments, carried out in July 1980 and June 1981,

consisted of observing two sources, close in the sky, which

could be repeatably observed in a cyclical manner for many

hours (six hours in July 1980 and twelve hours in June 1981

for one pair, 0?5 apart in the sky, and three hours for a

second pair l0?0 apart) . During the short interval between

successive observations on each source, we can model the

change in phase to much better than half an ambiguity, in most

cases, thus allowing each phase delay observation to be

"connected" to the ones before and after it.

Before discussing the results of these experiments we

will first study the problem of phase delay ambiguity predic-

tion. In particular we will need to know the effects of

random errors in the group delays on the phase delay predic-

tions. We will also need to know the effects of phase delay

ambiguities on the prediction of the group delays.

The phase-delay-ambiguity prediction algorithms are

derived from Equations (4.1.1.16) through (4.1.1.19). We

reproduce these equations here, with an additional term added

to each equation to account for observation noise (either

random or systematic). The relationships between our various

observations are:

x = T + I + x (4.2.1)

g n x g

Ps= I + 0s + C 4..2

x n + 0 x  + x (4.2.3)
p n x p p
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1s S + + C (4 2.4)
p n x p p
x S x s

where Eg, Cg C and e are additive noise contributions to

the X- and S-band group delays, and the X- and S-band phase

delays, respectively. The phase delays given in Equations

(4.2.3) and (4.2.4) are not normally known. The quantities

which we do know are the visibility phases, *x and *s (cor-

rected for feed rotation; see Section 4.1.2), which are

related to the phase delays by (see Appendix A)

x = (2-nN x  + *x )/x  (4.2.5)
px

and

SP = (2nN + s)/ (4.2.6)

where w x and ws are the (angular) RF's in each band. The

(integral) numbers N X and Ns are the phase delay ambiguities.

These are the numbers which we wish to predict based on the

group delay measurements. Normally, we make crude estimates

of Nx and Ns, and then calculate corrections, ANx and ANs , to

these estimates in order to find the values which satisfy

Equations (4.2.1)-(4.2.4). The phase delays calculated from

the crude estimates of the ambiguities and the visibility

phases will be called the a priori phase delays.

An obvious approach to estimating Nx and Ns is to manipu-

late Equations (4.2.1) and (4.2.2), and form estimates of the

phase delays based on Equations (4.2.3) and (4.2.4). A simple

rearrangement of Equations (4.2.1) and (4.2.2) yields,

ix= (X _g )/(1-0) + (Og +£g -Eg)/(l-) (4.2.7)

9 , 9 . .

• ' . . . .
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and

n = ( -C )(-l) + (0 +C -PC/ )(P-i) (4.2.8)

Since 'x and s are the only measured quantities in Equations
g g

(4.2.7) and (4.2.8), we can form estimates of Ix and Tn using

the first terms on the right hand sides of Equations (4.2.7)

and (4.2.8). These estimates will be given by

6 xs x s 5 P ' .9(Ix~g )x = ('rg- g)/(l- ) (4.2.9)

and

(-n) g (P-g - / /(-l) (4.2.10)

and they will be related to I and Tn by

g "x = x - (0g +Cg -C )/(l-p) (4.2.11)
xgg9 x g g g

and
5s 5 xnx = g  - (OS +C -OC )/(P-1) (4.2.12)

where the superscripts xs and corresponding subscripts gg

denote the observation types used to make the estimate. (In

practice, an estimate of O is made before Equations (4.2.9)

and (4.2.10) are evaluated. The O given in Equations• g

(4.2.11) and (4.2.12) can then be treated as a correction to

the a priori value.)

We may now make predictions of the phase delays based on

Equations (4.2.11) and (4.2.12), and Equations (4.2.3) and

•4
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(4.2.4). The predictions are

(xXS =a - a(I )X (4.2.13)pgg n gg x gg

and
aSXS = (nXS ,d'xXS (..4

pgg gg y( gg (4.2.14)

Some simple algebra shows that the difference between the

a priori phase delays and the predictions will be

- )_-2N /W + 0 + C + [(I+a)(O +E )-(a+O) g]/(c-1)p pgg 2Ax/x + 0p cp+gg

(4.2.15)

and

) = - 2 ANs/Ws+ OS+ E + [ (l+y) (Og+cg)-(y+O)c ]/(0-I)
p pgg9 p p gg g

(4.2.16)

-x -

where ;x and ;s are the a priori estimates of Tp and cp based
p p P

on assumed values of, Nx0 and N, N and N (i.e.

(2nN°+$ )/wx ); and the actual number of ambiguities will be

given by Nx=N0+ANx. Similar relationships hold for the S band

ambiguities.

Equations (4.2.15) and (4.2.16) provide us with a method

of calculating ANx and ANs, but we should notice that these
s x an s ad.

estimates will be corrupted by the offsets O and 0, and
g p x

the noise contributions to each of the delay measurements E ,

s x 5g, g p, and p.

It will be instructive to consider each of these corrup-

tions (the offsets and the noise), separately. The offsets,

if constant, are more of in annoyance thar a problem. (In our

formulation any variations in the offsets, by definition, are

I
I " " "" "-- '- ."'. -."" " ' .- ... "-""" ''",- .. ., ,. -.T, ; : ., , ..-..........,".....-..-'.--..,......,.-.....-,-_.._'..
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absorbed into the noise contributions.) If we rewrite

Equations (4.2.15) and (4.2.16) excluding the noise terms, we

have

11~ X =s 21AN /W + Ox+ (l+a)Os /(0-l) (4.2.17.a)
p pgg og+

and

-(iS )X = -2nANsIs+ O+ (l+Y)O/(P-l) (4.2.17.b)

We have two equations above, and 5 unknowns, although two of

these unknowns (ANx and ANs ) must be integral. Therefore,

from the first pair of prediction differences, we can set the

non-integral parts of the prediction differences equal to the

offsets. Subsequent prediction differences could then be used

to check the constancy of the offsets. We should note that

there is no unique separation of the ambiguity corrections and

the offsets, i.e. ANx and AN5 can be changed by any integral

values (but the same ones for all observations) and these

changes can be absorbed into the offsets. These arbitrary

shifts of the phase delays, by constant amounts, pose no

serious problem because they are indistinguishable from an

epoch offset between the hydrogen-maser frequency standards at

each site.

We now turn our attention to the noise contribution to
0

the prediction differences. These contributions do pose a

serious problem for ambiguity prediction, if the noise is

large. Equations (4.2.15) and (4.2.16), omitting the "0"
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terms, are

-X-(.X)XS -2nAN /w + Cx+ [(1+a)eS_(a+8)cg]/(8_l)
p pgg9 x x p g g

(4.2.18.a)

and

-5(S)XS = -2nANs/W + Cp +(+y)e 5-(Y+O)E 1/0-l)
p pgg s p g g

(4.2.18.b)

In the following discussion we will consider the effects of

several different forms of noise on the prediction process.

Before doing so we will compress the notation of Equations

(4.2.18). We will write the equations as

APp = -2nAN /W + Ep + (C) s - (C ) X (4.2.19a)
p xgx p xgg ( xg1.

and
SS S X X

=-2nAN /W + E +(C)E -(Cs) gCg (4.2.19.b)
p s s p sg g s g g

where AP and AP5 are the prediction differences at X- andp p
S-band, respectively, and (Cx)g, (C)x I (CS)g, and (C s) are

the coefficients which multiply the group delay errors in

Equations (4.2.18). The values of these coefficients for

Sw /(2n)=8.3 GHz and w s/(2n)=2 .3 GHz are (C x) =0.16,

(C )x=1.16, - and (Cs)g2.16, for a=l.0, andx g (C sg

=7y-1 3.5. (a,O and y were the ratio of the respective

effective frequencies squared; see Equations (4.1.1.12) to

(4.1.1.16).)

Clearly from Equations (4.2.19) we can see a coupling of

the effects on the prediction errors, of the errors in the

group delays at X- and S-bands, i.e., an error in the S-band

4
," i.. .. . . j.--*\*'. - N
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group delay will affect the prediction of both the S-band and

the X-band phase-delay ambiguities. We may statistically

calculate this coupling by computing the variance-covariance

matrix (or simply covariance matrix) of the prediction errors.

If the group-delay errors are uncorrelated, and if we neglect

*: the error contribution of the phase delays (these are

approximately 40-fold smaller than the group delay errors),

the covariance matrix of the prediction errors will be given

by

V AP <cox) 2 > <Ax As
( p p

<(Ap) (AS)> <(AP )2 >J
p p p

x x2 s 2 x 2 s211 .35(a) +0.026(a -2.51(a~ +0.019(ay)

symmetric 4.67 (cx) 2 +1.35(as ) 2
g g

(4.2.20)
- ~ wee(2s2

where (a) 2 and (a ) are the variances of the X- and S-band
g g

group delays, respectively, and where we have substituted the

numerical values of the coefficients in the covariance matrix.

In order to resolve correctly the phase delay ambigu-

ities, we need the prediction errors to be much less than one

cycle at each frequency. In Figure 4.2.1, we plot the bounds

on the group delay uncertainties such that the phase-delay

prediction differences will have uncertainties less than 0.030

nsec (-0.25 cycles) and 0.110 nsec (-0.25 cycles) at X- and

S-band, respectively. (These uncertainties represent 1/4 of a

.-o .-.- ...- ..-. . . . .. - . ., . ... . .- ', " -. 2-- *- *. ~ *%S .- %.S -. S- ' . - ' '. --'
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Figure 4.2.1 X- and S-band group delay standard deviation requirements

s necessary for phase-ambiguity elimination
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cycle at each frequency.) From the figure we see that in

order to simultaneously predict both the X- and S-band

ambiguities, we need to know the group delays with uncertain-

ties of <0.025 nsec and <0.090 nsec, respectively, at these

two frequencies. These bounds put very stringent accuracy

requirements on the Mark III system if we want to predict

phase-delay ambiguities reliably. In Section 4.3, we will

investigate whether or not the Mark III system can meet these

accuracy requirements.

After the estimates of the phase delay ambiguities have

been obtained, the resultant phase delays are used to obtain

estimates of the group delays. The differences between the

observed values of the group delays and their predicted values

can be used to study the errors in the group delays and to

detect any remaining ambiguity errors. We will refer to these

differences as "apparent group delay errors."

The relationship between the observed group delays and

the predictions based on the phase delays may be derived in a

manner similar to that used to derive Equations (4.2.15) and

(4.2.16). The predicted group delays will be given by

(X)xs = (1v+l)p - (l+a)'rp)/(y-a) (4.2.21)
g pp p p

and

0. .. . o( r o - ( . ..) )/er--) (4.2.22)
g pp p p

... ....................................- _.................... ., ,... .... .. . * -. .



-183-

and the errors in the predictions will be

X xs x x x/
g-(;X ) = - (Y+l) (O +2,AN /W +Cp)i(y-)

s S

+ (1+a) (O+21ANs/Ws+C )/(Y-a)

(4.2.23.a)
and

5 ~.xs s x
S ( ) g - (Y+P) (O +2ANx/ W +c )/(y-a)g gpp 9 p xx p

+ (U+P)(o S+2AN /W +Cs)/(y-a)
p s s p

(4.2.23.b)

As we did earlier in this section, we will consider parts of

the above equations separately. We consider firstly the

effects of the phase-delay ambiguities. In this case,

(A ) - 0.139AN x + 0.070AN s  (nsec) (4.2.24.a)9 g PP s
and

5 ~s xs
-AT ) = - 0.259ANx + 0.510ANs (nsec) (4.2.24.b)

where we have substituted the approximate numerical values for

the constants given in Equations (4.2.23). The above equa-

tions highlight one of the disadvantages of the choice of X-

and S-band for the Mark III system when phase-delay ambiguity

prediction is attempted. If ANx=2 and ANs=1, then the differ-

ence between the observed X-band group delay and the value

predicted from the phase delays would differ by only 0.001

nsec. Of course, in this case the difference between the

observed S-band group delay and its prediction would be 0.761

nsec. However, there are cases where the noise contribution
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to the S-band group delays could be this large (see Section

4.3). In this case, these ambiguity errors could not easily

* be detected.

"* In general, we see from Equations (4.2.24) that ambigu-

ities in the phase delays produce differences between the

observed group delays and the predictions of multiples of

=0.070 nsec and =0.26 nsec at X- and S-band, respectively.

The process of phase-delay-ambiguity prediction is somewhat

harder than may have been initially thought, given the

ambiguity spacings of =0.12 nsec and =0.44 nsec at X- and

S-band, respectively, because of the coupling of the X- and

S-band errors. We should also notice that changing the

ambiguities at one frequency will affect the implied group

delay errors at both X- and S-band.

The noise contributions to the apparent group-delay

errors may also be calculated from Equations (4.2.23). In

this case,

x -x xs x x sO(X )p f g - 1.16c + 0.16c (4.2.25.a)
9 g PP 9p p

and
s - sxs~ s X 5sg -(i ) - - 2.16c + 1.16cp (4.2.25.b)
9 g PP 9p p

where again we have substituted the numerical values of the

coefficients. If we firstly consider random error only, then

x s sC < , and p g, and the major contribution to the

differences given above will be from the group delays. If the

errors in the group delays are too large then the phase delay

ambiguities will be resolved incorrectly (if no other means

">" • "~~~~~~~~~~~~.... ... - -............................ j " ..-.. -.-.. e -j .-. ,j .. .j -'-'.j '. . -"......' '.'-'
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are available for determining the phase delay ambiguities),

and the differences between the observed group delays and

their estimates based on phase delays will be smaller than the

actual errors.

Figure 4.2.2 allows us to study the "folding" of group

delay errors in more detail using a graphical technique. In

this figure we have shown, as a function of e and e thegg

boundary of those errors that will lead to the correct

ambiguity predictions. (This boundary is the central diamond

shaped region.) If the errors in the group delays fall out-

side of this region (see, for example, point labeled A), then

the phase delay ambiguities will be incorrectly estimated.

When the errors in the group delays are computed from predict-

ed phase delay ambiguities, the apparent errors will fall

within the central region (see point A'). Consequently,

independent of the original errors in the group delays, the

apparent errors will always be inside the small central

region. Figure 4.2.2 will be useful when we are analyzing

data because it will give us a convenient means for determin-

ing the relationship between the actual errors in the group

delays and the apparent errors calculated from the phase

delays (if the phase-delay ambiguities are determined solely

* from the group delays).

So far we have been discussing the X- and S-band phase

delays separately. However, if we want to benefit from the

precision of the phase delays, we should compute the non-dis-

persive delay from the phase delays. Again, we will be inter-
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Figure 4.2.2 Transformation of actual group delay errors to apparent group
delay errors
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ested in the effects of ambiguities in the phase delays on the

estimate of the non-dispersive delay. Firstly, we will

examine the expressions for the non-dispersive delay estimates

computed from the group delays. From Equations (4.2.12), we

have for the group delays

()xs x s= Tn + 1.0 8 E - 0.08eg • (4.2.26)

The expression for the non-dispersive delay estimated from the

phase delays may be derived in a manner similar to that used

to derive Equation (4.2.12). The result is

Or ) = In + 1.08(2nAN x/x + x 0.08(2 nANs/Ws+ )
npp nxxp s sp

(4.2.27)

We should notice in Equation (4.2.27) that ( Xs has two
n pp

ambiguity spacings, one of 0.13 nsec due to the X-band phase

delay ambiguity, and the other of 0.035 nsec due to the S-band

phase delay ambiguity. This latter ambiguity spacing clearly

indicates the need for a reliable prediction of the S-band

phase delay ambiguities. The effect of an S-band ambiguity

(0.035 nsec) would be difficult to detect in the postfit

residuals from a geodetic solution using ( n) xs because the

errors in the geodetic models for the delays have RMS scatters

of =0.090 nsec (see Chapter 5).

In anticipation of the results which will be presented in

Section 4.3, in the remainder of this section we discuss the

effects of a number of error types on the difterences between

the various delay measurements and their predicted values.

0.
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We now investigate the detection of errors in both the

group and phase delays, by comparing the differences between

Equations (4.2.25.a) and (4.2.25.b) and Equations (4.2.26) and

(4.2.27). In view of the results which will be presented in

the next section, we will discuss two classes of systematic

errors in the observations. Firstly, we consider the case

when the S-band group delay measurements have a systematic,

time dependent, error, and all of the other measurement errors

are assumed to be zero. We see from Equation (4.2.25.a) that

the differences between observed X-band group delays and their

predicted values from the phase delays will be unaffected by

such an error (i.e., eg=Cp=CP=0). The S-band group delay dif-

ferences will be non-zero, and will equal the errors in the

S-band group delays. The non-dispersive delay estimates will

differ by -0.08 times the errors in the S-band group delays.

We can easily detect this error because the X-band group delay

predictions will agree with the observed values. Similarly,

if the X-band group delays are in error (but not the S-band

group delays), then the X-band group delay predicted and

observed values would differ. In this case, the S-band group

delay predictions would agree with the predicted values, hence

allowing the X-band group delays to be isolated as the delay

measure with an error.

Thus far, we have considered the phase delays to be error

free because of the =40-fold smaller uncertainties, and their

insensitivity to instrumental errors (see Section 3.1).

However, there are certain errors which will affect the group
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and phase delays equally. Such an error can arise in several

different circumstances. For example, all dual-band observa-

tions made at Onsala, Sweden, use two radio telescopes, one

for receiving X-band signals and the other, =600 m away from

the X-band antenna, for receiving S-band signals. In this

case, the S-band observations are corrected to the X-band

radio telescope's position, using the coordinate differences

between the two radio telescopes. Any errors in the relative

positions of the S- and X-band antennas will introduce an

error in the S-band delays referred to the X-band telescope's

position. In addition, any differences in the atmospheric

delay between the two antennas will introduce a similar type

error. If we consider Equations (4.2.25) we see that if the

S-band group and phase delays have equal errors then the

differences between the observed and predicted values of the

group delays at X- and S-band will be non-zero and equal.

However, if we examine the expressions for the non-dispersive

delays (Equations (4.2.26) and (4.2.27)) we see that this

error will cause no difference between the estimates of the

non-dispersive delay from the group and phase delays. Again,

based on these properties we should be able to detect this

type of error.

Of course, with actual measurements, all of the delay

measurements will have some amount of error, and this will

complicate the isolation of errors when we compare predictions

and observed values of the various delay measures. We will

investigate the magnitude of these errors by testing our

I '- - - .... ' ..' ?''' -"" ' -. .-"" -- " . -" ""' -" .- , . .'- *" -" ", '" , " ."""*
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ambiguity elimination techniques on data which can be phase

connected without the use of group delays.

4.3 Results from "phase-connection" experiments

When the studies of predicting phase delay ambiguities

were started, it was hoped that a technique could be developed

which would allow phase delays to be used in geodetic experi-

ments. The initial studies soon indicated that, although the

Mark III system could theoretically measure sufficiently

accurate group delays to allow reliable ambiguity prediction,

the actual measurements were of insufficient accuracy. Conse-

quently, the studies on phase-delay-ambiguity prediction, have

been used instead to study the quality of the group delays.

In this section, we will therefore concentrate on errors in

the group delays which have been estimated by computing esti-

mates of the group delays from the phase delays.

The techniques used to carry out the ambiguity predic-

tions were explained in Section 4.2. We demonstrate the

*application of these techniques in Figure 4.3.1. This figure

shows the differences between the predicted and the phase-

connected phase delays at both X- and S-band for the

°° Effelsberg-Onsala interferometer. One aspect of this figure

is immediately apparent. The differences between the predict-

ed and the phase-connected phase delays at X- and S-band are

*not randomly distributed. They show systematic trends at both

X- and S-band. We should also notice that the drift between

0'
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the predictions and the phase-connected phase delays is suffi-

ciently large that, without the frequent observations of this

source which were available in these experiments, the phase

delay ambiguities would have been incorrectly eliminated. If

we now compare the observed group delays with their predicted

values (from the phase delays) we see the reason for the

systematic differences of the phase delay predictions (Figure

4.3.2). These differences will be called the "apparent group

delay errors." (We use the word "apparent" because these

differences could be due to remaining phase delay ambiguities

or errors in the phase delays, in addition to group delay

errors. However, any ambiguity errors will cause discontinu-

ities in the systematic trends.)

Most of the variations in the X-band group delays can be

explained by the effects of the spurious signal in the Onsala

X-band receiver (see Section 3.2). We show in Figure 4.3.3

the X-band apparent group delay errors after correcting for

the presense of the spurious signal. This correction reduces

the apparent errors, but there are still some small (=0.03

nsec) differences. The apparent S-band group delay errors can

not be explained by the effects of a spurious signal.

In an attempt to determine the origin of these differ-

ences, we show in Figure 4.3.4, the phase calibration contri-

butions to the X- and S-band group delays at Effelsberg and

Onsala. Clearly, we cannot account for the S-band differences

with phase calibration errors. Nor can the difference be due

to an error in the relative positions of the two radio tele-

-.. ... ...-. -. -...• ".. . . . . . . ,. .. ... . . . ,
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Figure 4.3.3 Differences between the X band observed and predicted

group delays for the Effelsberg-Onsala baseline after
correcting for the phase calibration error
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scopes at Onsala (see discussions in Section 4.2), because if

the differences were due solely to an error in the relative

positions of the telescopes, then the apparent X-band group

delay errors would equal the apparent S-band group delay

errors. At this time the origin of the S-band differences is

unknown. We will discuss these differences further in Section

4.4.

The Effelsberg-Onsala interferometer is not the only

one to show systematic differences between the group delays

and their predicted values from the phase delays. In Figure

4.3.5, we show the apparent group delay errors at X- and S-

band for the several other interferometesr involved in the

July 1980 experiment. (Note that the differences are plotted

on different scales for X- and S-band, and within each band we

use two different scales depending on the size of the differ-

ences.)

For all baselines the weighted-root-mean-sqaure (WRMS)

scatter of the apparent group delay errors are greater than

those expected from the signal-to-noise ratio of the observa-

tions. Of course, there will be apparent errors in group

delays if there are phase-connection errors. However, we must

remember that changing the phase delay ambiguities at one

frequency will change the apparent errors in the group delays

at both X- and S-band (see Section 4.2). Consequently, it

becomes necessary to check the two group-delay differences

when considering a phase-delay-ambiguity error as a possible

cause for an apparent group delay error. In addition, the
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phase delays used to predict the group delays, satisfy a

closure condition, i.e., they sum to approximately zero (and

much less than an ambiguity) around closed triplets of base-

lines when the phase delays are referred to the same epoch

(see Section 3.3). Hence, if the phase-delay ambiguities are

changed on one baseline, they must be changed on at least one

other baseline to ensure that the closure conditions remain

satisfied.

We now consider the differences for several of the base-

lines shown in Figure 4.3.5. We firstly consider the apparent

S-band group delay errors for the Haystack-Onsala interfer-

ometer. We see in this case that for the last 3 hours of the

experiment the group delays seem to be in error by 0.510 nsec

which suggests an S-band phase connection error. However,

when we plot the group and phase delay closure errors for a

triplet of baselines involving Haystack and Onsala (Figure

4.3.6), we see immediately that the group delays have closure

errors which are remarkably similar to the Haystack-Onsala

apparent group delay errors. The phase delays, however, show

very small closure errors. Hence, even before we attempted to

predict group delays from phase delays, we should have

expected large differences based on the group-delay closure

errors.

One other case from Figure 4.3.5 which we will examine is

the apparent group-delay errors for the Ft. Davis-Owens Valley

interferometer. We notice that in this case the apparent

group delay errors seem to have a bimodal distribution,

-. . c°.5 . ..--- ,
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especially at S-band. This type of pattern would be expected

if there were remaining phase delay ambiguities. However, the

phase delay postfit residuals at X- and S-band for this base-

line do not show any apparent phase connection errors (Figure

4.3.7). (In this case, the group delay closure errors have

too much scatter to allow the detection of any bimodal

errors.)

We have compiled the statistics of the apparent group

delay errors (in a manner similar to that used in Chapter 3),

and these results are shown in Figure 4.3.8. We have plotted

as a function of the expected scatter of the group delay

errors, the normalized RMS scatter. We have shown these plots

for both the July 1980 and June 1981 experiments. The normal-

ized RMS plot shows trends which are similar to those for the

residual phases (see Figures 3.1.12 and 3.1.13), i.e., there

appears to be an overall scaling factor of approximately 1.1

at X-band and 1.2 at S-band, and performance limits of 40

psec and 14 psec at X-band for the July 1980 and June 1981

experiments, respectively, and 150 psec at S-band for both

July 1980 and June 1981.

There appears to be a large improvement in the X-band

system performance between these two experiments which is

probably due to the smaller spurious signals during the June

experiment. (Remember that at Haystack even after correcting

for the presence of the spurious signal, there were residual

trends in the contribution of the calibration phases to the

group delays. See Section 3.2 for discussion.) The S-band

4i
.
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Figure 4.3.8 Normalized RMS scatter of the implied group delay errors
- 1as a function of the expected RMS scatter
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Figure 4.3.8 Continued

b, 10.0

I July 1980 S-band

9.0

8.0 I

I
7.0

I Legend
* 3c 345
m =W 5 12

6.0 I
',4

5.0

4.0

3.0
N\

2.0. \curve for a 2, (1,2ao)2+(0.15) 2 nsec

1 .0 aa i 0t

0.2 0.4 0.6 0.8 1.0.3.0

L-

2.0xcurved rM d(12ere 15)s2 sec



-207-

Figure 4.3.8 Continued
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Figure 4.3.8 Continued

d.

8.0 June 1981 S-band

7.0

6.0

S3C345
SW* 512

5.0 * 0234+285
I 0235+164

LU4.0

• 0

0.04 0.0 0.2 0.4 0.6 0.8 1.0

2.0crExpected ROm dlfferences ( nsec)

• U
* 2.- - -•

1. .

rm0

,:: '. :% : '::?:? :.:::: ; ::?: : ::::,: :;: :-;::: i .-:: i:::,,i!:. i.:: L ::::i:: ):;:.: : :::::::::::::::: ::::0:::



-209-

system performance does not seem to have improved between the

two experiments.

The performance threshold at S-band implies that we

cannot predict phase delay ambiguities from group delays even

with infinite signal-to-noise ratio observations at S-band.

(See Section 4.2; the upper bound in the S-band uncertainty

for phase delay predictions was 0.09 nsec.)

We have yet to discuss the possible origins of the syste-

matic trends. We leave this discussion until we have consid-

ered the apparent group delays from a geodetic experiment.

4.4 Results for geodetic experiments: Effelsberg-Onsala

We saw in Section 4.3, that when we evaluated the

apparent group-delay errors from the phase-connected experi-

ments, the performance of the S-band system was not good

enough to allow the prediction of the phase-delay ambiguities

from the group delays. However, in view of the systematic

trends seen in the apparent group-delay errors, we have

attempted to predict phase-delay ambiguities from the group

delays for the Effelsberg-Onsala interferometer, in order to

gain a better understanding of these trends.

We chose to analyze the July 26th 1980, geodetic experi-

ment because this experiment had the largest number of

observations of any 24hr experiment involving these two

antennas. We show in Figure 4.4.1 the apparent group delay

errors at X- and S-band. (We have plotted each figure twice,

6 ' * . -". ' . ..- .." ." . . .-." ..- -." ..-- .",: , .- ..", - . .:.'.'. : " "'"
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once with one-standard-deviation error bars, the second time

without error bars.) We see in these figures the same types

of systematic trends which were observed in the phase

connected experiments. Again, the S-band results show much

greater trends than the X-band results. The normalized RMS

scatter of the X-band results is 3.4, which indicates that

their scatter is not in accord with their statistics.

We have shown these results because they give us some

insights into the origin of the systematic trends. There are

several important properties of this origin which can now be

deduced from the geodetic results. Firstly, we notice that a

major part of the apparent group delay errors at S-band is

independent of the radio source being observed. We may there-

fore conclude that the differences are most probably not

caused by the brightness distributions of the radio sources

(see Section 3.3). Also, since the radio telescopes look in

many different parts of the sky in rapid succession, the major

portion of the trends is probably not due to antenna

deformation. In Figure 4.4.2, we show the elevation angles at

Effelsberg and Onsala for these observations. From this

figure we see that observations are taken at many different

elevation angles in a short period of time. (In each of these

cases some portion of the error is may be due to these causes

(i.e., source structure and antenna deformations), because the

scatter of errors around smooth curves is greater than would

be expected from the variances of the observations.)

The apparent group delay errors seem to depend mainly on

-. • . .. - . . . -. • .. . .-. " ..*. . .. , , . . - . . .- . . ... . , , .. - ' . . , . ' ,\ .
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time, and hence it is likely that they arise from the Mark III

system itself. What could be the origin of the errors? We

saw in Section 3.1 that the Mark III dispersion depends on

time and we found lower bounds on the variations of 8 psec/day

at X-band and 36 psec/day at S-band. But we stressed in that

section that these are lower bounds because we cannot estimate

the full delay variations from the residual phases. At this

time it seems that variations of the Mark III dispersion with

time are the most likely cause of the systematic variations of

the apparent group delays.

It is important at this time that we put the systematic

variations of the S-band group delays into perspective. In a

geodetic data analysis, the S-band group delays are used only

to calculate the ionospheric correction. Consequently, the

contribution of their errors to the non-dispersive delays are

12.5 times smaller than their errors and, hence, the threshold

performance limit of 150 psec at S-band, results in the thres-

hold limit of 12 psec for non-dispersive delays. When we

compare this limit with the threshold limits of the X-band

group delays (40 psec in July 1980 and 14 psec in June 1981),

we see that the X-band group delay errors are of equal, or

more importance, than the S-band errors.
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5. Summary of results

We have now discussed the theory and the operational

performance of the Mark III VLBI system. While the per-

formance of the system is not so good as expected (see

Chapters 3 and 4), we have not detected any major errors in

the measurements made with the system. We now discuss some of

the geodetic results which have been obtained with this system

and the Mark I VLBI system.

This chapter will consist of three papers -- two of which

have already been published and one of which is currently

being prepared for publication. For those readers unfamilar

with the locations and names of the radio telescopes which

have been used in geodetic VLBI experiments, this information

is given in Table 5.1. The telescope locations are also shown

in Figure 5.1. The IAU (International Astronomical Union)

convention and the common names of the radio sources discussed
4-

here and elsewhere in the thesis are given in Table 5.2.

The first paper we present, entitled "Geodesy by radio

interferometry: Intercontinental distance determinations with

subdecimeter precision", was published in 1981 and discusses

the baseline length measurements from radio telescopes in

North America to a radio telescope in Onsala, Sweden, which

were made with the Mark I VLBI system. When this paper was

published we thought that these length measurements were of

subdecimeter precision. Soon after dual frequency band

observations to Onsala were analysized, it became clear that

f I
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Table 5.1 Radio telescope descriptions and names

Observatory Name* Operated by Location Antenna

Diameter

North America

Haystack HAYSTACK Northeast radio Westford, Ma. 37 m

Observatory Observatory Cor-

poration (NEROC)

Westford WESTFORD NEROC Westford, Ma. 26 m

Observatory

Harvard HRAS 085 Harvard University Ft. Davis, Tx. 26 m

Radio Astron-

omy Station

Owens Valley OVRO 130 California Insti- Big Pine, Ca. 40 m

Radio Obser- tute of Technology

vatory

National NRAO 140 National Radio Green Bank, Wv. 43 m

Radio Astron- Astronomy Obser-

omy Obser- vatory (NRAO)

vatory

Eupope

Onsala Space ONSALA60 Chalmers Institute Onsala, Sweden 20 m

Observatory (X-band) of Technology

ONSALA85 26 m

(S-band)

Effelsberg EFLSBERG Max Plank Institut Bonn, Federal 100 m

Observatory fur Radio- Republic of

astronomie Germany

Chilbolton CHLBLTON Appleton Chilbolton, 26 m

Observatory Laboratories England

These names will be used on the computer generated plots.

S
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Table 5.2 IAU convention and common names for VLBI radio

sources

Common name IAU name

4C 67.05 0224+671

NRAO 150 0355+508

OJ 287 0851+202

4C 39.25 0923+392

OK 290 0953+254

3C 273B 1226+023

00 208 1404+286

NRAO 512 1638+398

3C 345 1641+399

VR 422201 2200+420

3C 454.3 2251+158

*The IAU (International Astronomical Union) names are defined

* in the form of rrhhtdd.d, where rrhh are the hours and minutes

of the right ascension of the source, and dd.d is the declina-

* tion of the source in decimal degress.
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we had grossly underestimated the effects of the ionosphere

delay on the single frequency band (X-band) Mark I observa-

tions. Although, at the time we also thought that some of the

differences (between the Mark I and the Mark III baseline

length estimates) could have been due to the change in the

equipment or to the ionospheric delay correction computed from

the two antennas at Onsala (see Section 4.2).

We learned a valuable lesson on the effects of un-modeled
0

systematic errors from this experience. This lesson prompted

the detailed analysis of the baseline length estimates which

are discussed in the second paper in this chapter -- "Geodesy

by radio interferometry: Precision and accuracy of inter-

continental distance measurements."

The third paper we present discusses the determination of

the tidal parameters of the earth using VLBI. The paper is

entitled "Determination of the tidal parameters of the earth."

I

N,.
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GEODESY BY RADIO INTERFEROMiTRY:
INTERCONTINENTAL DISTANCE DETERMINAFIONS WITH SUBDEClMETER PRECISION

T. A. Herring,' B. E. Corey,' C. C. Counselman III,' I. 1. Shapiro,''
B. 0. ROnning.' 0. E. H. Rydbeck,' T. A. Clark.$ R. J. Coates,'
C. Ma,' J. W. Ryan,' N. 0. Vandenberg,' H. F. Hinteregger,'

C. A. Knight." A. E. E. Rogers, A. R. Whitney,*

D. S. Robertson,' and B. R. Schupler'

Abstract. Analysis of very-long-baseline VLBI determinations, with subdecimeter preci-
interferometer (VLBI) observations yielded es- sion, of these intercontinental distances.
timates of the distances between three radio
telescopes in the United States and one in 2. Data Analysis
Sweden, with formal standard errors of a few
centimeters: Westford, Massachusetts-Onsala,
Sweden: 5,599,714.66±0.03m; Green Bank, West The data analyzed consisted of interfero-
Virginia-Onsala, Sweden: 6,319,317.75±0.03m; and metric group delays [Shapiro, 1976] which were
Owens Valley, California-Onsala, Sweden: obtained from three sessions of observatiof
7,914.131.19±0.04m, where the earth-fixed refer- involving up to four antennas, as described in
ence points are defined in each ease with re- Table 1. All observations were made with the
spect to the axes of the telescopes. The actual Mark I VLBI system with a center radio frequency
standard errors are difficult to estimate re- of about 8 GHz. A multichannel bandwidth syn-
liably but are probably not greater than twice thesis technique (Whitney et al., 1976) was
the formal errors. used. Each recorded channel had the Hark I

bandwidth of 360 kHz, whereas the synthesized
1. Introduction bandwidth was r100 MHz in the first session of

observations and P300 MHz in the last two sea-

Very long baseline interferometry (VLBI) has sions. A hydrogen maser frequency standard of
been used for the past decade to determine modern. post-1970, design was used at each
distances between radio telescopes and positions telescope for each session.
of radio sources. Improvement in the precision The Cartesian coordinate system used in the
of baseline length determination in North analysis was geocentric and earth-fixed with the
America over this period has been substantial -- Z axis parallel to the mean pole of rotation of

. from a precision of about 1 m [Hinteregger et 1900-1905, as defined by the International
" al., 1972) to a precision of under five centi- Latitude Service and maintained by the Bureau
" meters (Robertson et al., 1979) for baselines International de 1'Heure (BIH). The X axis was

from about 1000 km to just under 4000 km in defined to be perpendicular to the Z axis and in
length. Near the middle of the decade, dis- the direction of the Greenwich meridian. The Y
tances between North America and Europe were axis completed the right-handed triad. Opera-
determined with a precision of about half a tionally, the origin of this system was defined
meter [Robertson, 1975; see also Cannon et al., by the coordinates for the intersection of the
1979). In this paper we describe more recent azimuth and elevation axes of the Haystack radio

telescope, obtained from a combination of space-
craft-tracking and VLBI observations made at

'Department of Earth and Planetary Sciences, various sites. The orientation was defined'by
Massachusetts Institute of Technology, Cam- the BIH values for pole position and UT1 (1968
bridge, Massachusetts 02139. system), with the addition of fortnightly and

monthly terms of small amplitude (Woolard,
'Onsala Space Observatory, S-439 00 Onsala, 1959), and by the models for diurnal polar

Sweden. motion [McClure, 1973) and earth tides (based on
ephemeris positions of the moon and sun, on the

'Goddard Space Flight Center, Greenbelt, Love numbers h w 0.61 and £ u 0.09, and on the
Maryland 20771. assumption of no dissipation). The small ef-

fects of antenna deformations [Carter et al.,
'Northeast Radio Observatory Corporation, 1980], ocean loading, plate tectonics, and other

Haystack Observatory, Westford, Massachusetts errors In the model were ignored In view of the
01886. limited precision of the measurements being

analyzed.
5 U.S. National Geodetic Survey, Rockville, The orientation of this earth-fixed coordi-

Maryland 20852. nate system in inertial space (with respect to
the mean equinox and equator of 1950.0), was

'Computer Science Corporation, Silver Spring, defined by the pole position, by UTI and by the
Maryland 20910. standard formulas for sidereal time, nutation,

and precession, with certain small corrections:
'Also at Department of Physics, Massachusetts Woolard's (1953] theory as modified by Melchior

Institute of Technology, Cambridge, Massachu- [1971) was used for nutation; and 5,0271.1878 per
setts 02139. tropical century at 1950.0 was taken for the

precession constant. The origin of right ascen-
Copyright 1981 by the American Geophysical Union. sion was defined by the value 12 hr 26 min

* Paper nunber 8011609. 1647
f,1ll -(227/811/nRill-t609$01. ),I
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TIX11 1. Su'rary of .Lb] Ubservatiuri,.

Obbervation Duraticn. Nunber of Declination Range Number of
Session Dates bours Ariter~nast Sourcest of Sources, Group-Delay

deg Observations"i

1 Sept. 21-25, 1977 881t H,NO 10(b) -5.5 to 50.b 529 (151)

2 Feb. 24-26, 1978 50 H,O,V 8(4) 0.5 to 50.8 291 (77)

3 May 17-19, 1978 45 H,O,NV 10(10) -5.5 to 50.8 830 (258)

* H E 37-m diameter telescope of the Haystack Observatory, Westford, Massachusetts; N z 43-m
diameter telescope of the National Radio Astronomy Observatory (NRAO), Green Bank, West Virginia;
0 = 20-m diameter telescope of the Cnsala Space Observatory, Onsala, Sweden; and V ! 4O-m
diameter telescope of the Owens Valley Radio Observatory. Big Pine, California.

t The sources observed are listed in the caption to Figure 1. The numbers of sources observed at

Onsala are given in parentheses.

0* The numbers of observations involving Onsala are given in parentheses.

it Onsala participated for the last 62 hours.

33.246 sec for the radio source 3C 273B (ellip- Haystack as the reference and considered for
tic aberration removed), each other telescope for each session the use of

Using this framework and a theoretical model one parameter each for the relative offsets in
for the group delays [Robertson, 1975; Ma, epoch, rate, and (in several instances) rate of
1978), we estimated by weighted least squares change of rate. The intervals of applicability
the baseline vectors, the source positions, and of such 'clock polynomials' ranged from 7.5 to
the other relevant parameters. Included in the 24 hours; only for this latter case was a para-
last category are parameters that allow for the meter included for the rate of change of rate.
estimation of changes in pole position and The variations in the estimates of baseline
variations in UTI when data from two or more lengths resulting from these different parame-
sessions of observations are combined [Shapiro terizations were up to 1.8 and 1.2 times the
et al., 1974, 1976; Robertson et al., 1979]. In corresponding standard deviation obtained for
addition to these purely geometric parameters the adopted parameterization for the data from

* there are parameters in the model that represent each of the first two sessions and from the
the effects on the group delays of the propaga- third session, respectively. In view of this

tion medium and of the behavior of the clocks at stability, we deem it unlikely that either the
the various radio telescopes. The representa- propagation medium or the behavior of the clocks
tion of the propagation medium includes the has introduced errors in baseline length much in
zenith tropospheric delay as a parameter. Since excess of the formal standard deviations. The
the signal delay through the troposphere varies adopted choice of epochs and intervals of
with time and with location, a number of such applicability for these parameters (see section
parameters are utilized with this model. The 4) was based primarily on examination of the
effects of the ionosphere, always under -l ns in postfit residuals, especially those from obser-
the zenith direction, but not separately model- vations at low elevation angles for the para-

* ed, are largely absorbed by these parameters meters representing the behavior of the propa-
because of the similarity in the signature in gation medium.
the group delays of the ionosphere and the The inverse of the weight for each group
troposphere. The representation of the behavior delay was obtained from the sum of the variance
of the clock at one site relative to that at found from a signal-to-noise analysis (Whitney,
another consists of a polynomial in time of low 1974] and an ad hoc term included to account for
order with the coefficients as parameters, the error sources that were not a function of signal
first two denoting the epoch and rate offsets, strength. The inclusion of this term was motI-

Since the clocks drift unpredictably with time, vated by the desire to (1) allow for the effects
a number of such polynomials are usually employed, of systematic errors, and, relatedly, (2) weight

The choice of the number of parameters to the observations of the different sources more
represent the combined effects of the tropo- evenly, since for some strong sources the
sphere and the ionosphere and the behavior of signal-to-noise analysis yielded uncertainties
the clocks as well as the choice of the time that were well below the suspected contributions

interval of applicability of each parameter are of other errors. The magnitude of this ad hoc
to a certain extent subjective. We therefore term was assumed constant for the data for a
investigated the effects on the results of a given baseline for a given session of obser-
variety of such choices. As extremes for the vations. Its value was obtained from the con-
representation of the troposphere and the lono- straint that chi-square per degree of freedom be
sphere, we considered for each telescope the use unity, and its square root ranged from 0.10 to
of one parameter for the zenith delay for each 0.25 ns. Omitting this ad hoc term from the
session of observations and one such parameter variances changed the estimates of baseline

for each 12-hour period of observations. For length by up to 1.2 times the standard devia-
the clock behavior we chose the clock at Lions obtained with this term included.
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3. IResu]t3
4-

Table 2 gives our estimates of the distances
between the radio telescope in Sweden and the
three in the United States. The reference point C ;

for each telescope is the Intersection of the .
azimuth and elevation axes, except for the NRAO -

telescope where the reference is the point on

the polar axis closest to the (nonintersecting) 0

equatorial axis [Hinteregger et al.. 1972]. I -
Typical postfit residuals from the simultan- 0 L

eous analysis Of the data from all sessions are '2 o . E i. !
shown in Figure 1. The root mean square of 0

these residuals ranged from 0.13 ns for the
Haystack-NRAO data from the last session to 0.49 C
ns for the Onsala-HRAO data from the first 1 ..

session, the ratio being approximately as ex- E .% . ,

pected in view of (1) the threefold smaller 0 'n
synthesized bandwidth used in the first session a

ofoberaton,(2) the generally larger corre- a0%

lated flux densities obtained from observations

Involving the shorter baselines, and (3) the
slightly higher sensitivity of the Haystack-NRAO
system compared to the OnsPI&-NRAO system. C

The repeatability of the estimates of the ? I :t
baseline lengths shown In Table 2 Indicates that E

the formal standard errors may not be much a '

smaller than the actual errors. Howfver. one E
fact detracts from the importance of this Indl- 6. o
cation: The uncertainties Of the estimates of V, 4)

baseline lengths from the third Session of C ~aE 00 Wt

observations were much smaller than those from £ ,, L. o
the second which, in turn, were smaller than 0 4a

those from the first. The disparity between the Z Cu 'O .

uncertainties from the first and second sessions 04)o

was due primarily to the contrast in synthesized " " " "
bandwidths. The further discrepancy between the - -4

uncertainties from the first two sessions and c;, I. A
those from the third was due mainly to geometry; .*- .. *
the schedule of observations for the first two 0 *
sessions was controlled by requirements of other N •U
experiments involving only the U.S. antennas and 0

therefore did not properly provide for OnsalaS's 0

participation. Go XTN *Y I
The estimates for the propagation delay 0 E 000

through the atmosphere and ionosphere in the 4..
zenith direction ranged from 6.7 ns (NRAO) to -4

8.2 ns (Onsala): the estimates for the clock a o
parameters were also each in approximate accord 0 0 0

with expectations, ranging up to 23 us for epoch i m a L oCUEJna K

offsets and from 3x10 ' to .2x101" for rate X CXL E .

offsets, to 92.0 W

The estimates for the source positions, the a 4 2 ,

distances between the radio telescopes In the o
United States, and the pole position and UTI at % a 0
variations will be given elsewhere and discussed ; ; a V 4

there along with a much larger collection of t- Ca - 06
VLSI observations that Involved only the tale- 41 O 0 Vscopes in the United States. 0

4. Conclusions 0 O L -
Ii 0

Combination of data from three sessions of W 0 (.

VLSI observations involving sites in Sweden and 4 ,, a . U.

the United States yielded results of subdeci- a - '

meter precision in the determination of the . N W " . "
intercontinental distances. Since sufficiently a 2C
accurate and well-distributed observations to a * - 4-

determine baselines to Sweden with subdecimeter
precision were available for only one session,
the data are not useful for the establishment or

d%

- *1.*~=4~ -.--,
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The precision and accuracy of intercontinental baseline length

estimates are studied through a number of repeatability tests on

55 Mark III very-long-baseline interferometry (VLBI) observing

sessions carried out between November 1979 and January 1982. We

also present results from the analysis of a further 61 VLBI observing

sessions carried out between January 1982 and June 1983. The

estimate of the Westford, Massachusetts to Onsala, Sweden baseline

-. length obtained from the ensemble of observing sessions has a

statistical standard deviation of 0.5 an. The weighted-root-man-square

(WRMS) scatter of the estimates from the 40 individual observing

sessions involving these sites (each of approximately 24 hr duration),
about the ensemble mean is 2.6 cm. Studies of these solutions

indicate that the actual standard deviation of the baseline length

estimate is probably more in accord with the repeatability rather

than with the statistical formal estimate. The estimate of the

rate of change of the length of this baseline is 1.6 ± 0.5 cm/yr,

where the standard deviation of the rate is computed from the formal

uncertainty of the rate scaled by the ratio of the scatter of the

baseline estimates to the expected scatter computed from the standard

deviations of the length estimates. The WRMS scatter of the 40

baseline length estimates about this *best-fit" straight line was

2.0 cm. Although the rate of change of the baseline length is over

three standard deviations, we do not yet claim to have detected

the relative motions of these two sites because our studies indicate

that the VLBI estimates of the baseline lengths could be affected'

by systematic errors at the level of the apparent change in the

length.
A unexpected conclusion from these studies is that the precision

of the baseline-length estimates from solutions which incorporate

low-elevation-angle observations (as low as 3?5) is better, in

general, than the estimates from solutions which do not include

observations at elevation angles below 100.

"6
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Introduction

The Mark III very-long-baseline interferometry (VLBI) system

was introduced in April 1979 (Rogers eLal, 1983). This system

was designed to utilize two widely separated frequency bands, one

each near 2.3 GHz and 8.3 GHz, so that the dispersive delay due to

the Earth's ionosphere could be calibrated and, hence, eliminated
as a major error source in the estimation of the distances between

the radio telescopes that form the interferometers. The first

intercontinental observing session to partially use dual-frequency-band

data was carried out in November 1979, but only six hours of such

data were obtained. In July 1980, the first full dual-frequency-band

observing session, involving North American (N.A.) and EuropeaA

sites, was carried out. Between then and January 1983, over 30,000

dual-frequency observations have been made in observing sessions

sponsored by the NASA (National Aeronautics and Space Administration)

Crustal Dynamics Project and the National Geodetic Survey (NGS)

Polaris program (Polar-motion Analysis by Radio Interferometric

Eurveying). In this paper we discuss the analysis of VLBI data
obtained between November 1979 and June 1983 ( 36,000 observations).

This data set includes 41 observing sessions involving both N.A.

and European sites, with 40 of these observing sessions involving

Onsala, Sweden.

This paper is the first of a series which will discuss the

quality of the data, and the precision and accuracy of the geodetic

parameters which can be estimated from these data. Here we address

the question of the precision and accuracy of the estimates of the

baseline lengths between the radio telescopes participating in

these observing sessions.

The 'true" accuracy of the baseline-length estimates cannot

be determined reliably without a more accurate standard to which

the VLBI results may be compared. No such standard exists which

will allow accuracy to be checked at the necessary level of one

part in l0 over intercontinental distances (corresponding to=0.5

cm for a baseline between radio telescopes located in Massachusetts

.. ...-.... .... .:.i9I : K . ' ... i ,-. .- : :-.9, : .. ,....:, .. -. .. § . ..-.,. *.. *.* . _ -..* ..
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and Sweden). Without such a standard, we can still address the

accuracy question by investigating the variations in the baseline-length

estimates with changes in the data set or with changes in

parameterization of the models used to analyze the data. These

techniques, will, however, only place a lower bound on the estimates

of the accuracy of the results.

The main purpose of the Crustal Dynamics geodetic VLBI

experiments involving sites in North America and Europe is measure

the contemporary rate of motion between these continents, or to

place a useful upper bound on this rate. Measurement precision is

more important for this purpose than accuracy. But an understanding

of accuracy is required to identify sources of error that may changa

over the time interval used to estimate the rate, in our case

several years.
The question of the accuracy of VLBI baseline-length estimates

involves many facets of the technique. We limit discussion here

to the major error source: the effects of the neutral atmosphere,

or more precisely, the methods we have adopted to study these

effects. We first discuss the mathematical and statistical models
which were used to analyze the observations, and then the effects

on the baseline-length estimates of (i) limiting the minimum

elevation angle of observations used in the analysis; (ii) using

surface weather data to calibrate the neutral atmosphere delay;

*and (iii) estimating parameters that relate elevation angle to air

mass (see below). We also compare our results for the Haystack--

to-Onsala baseline length with values previously published.

Mathematical and Statistical Models

The data analyzed consisted of dual-frequency-band interferometric
group delays (Shapiro, 1976; Rogers et al., 1983), obtained in 123

observing sessions between November 1979 and June 1983. (Each of

these sessions was of approximately 24 hr duration.) The frequency

bands used were centered at 8.3 GHz (X-band) and 2.3 GHz (S-band).

6,-
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Within each frequency band, data were obtained in four to eight

* channels, each of 2 MHz bandwidth. The total bandwidth spanned by

these channels varied between 300 and 360 MHz at X-band, and 50

and 85 MHz at S-band, thus allowing accurate estimates of the group

delays (Whitney et al, 1976).
These observations were analyzed within the framework described

in Herring t (1981). However, the following models were used

in place of their counterparts described there: (i) The IAU-1980

nutation series (Wahr, 1981); (ii) the Greenwich sidereal time

formula of Aoki et al, (1982); and (iii) the atomic time-coordinate

time relationship that includes relativistic corrections (Shapiro,

et al., 1983). This new relativistic correction accounts for thi

change in the light propagation time in the potential fields of
the Earth and the Sun. In addition, we added corrections for the

ionospheric propagation delay, based on the dual-frequency-band

observations, and for the neutral atmospheric propagation delay,

based on surface weather data (Marini, 1975).
We assumed that the observation noise was an independent, zero

mean, Gaussian random process. The variance of the noise for each

observation was computed as the sum of two variances. The first

variance was computed from the signal-to-noise ratio (SNR) of the

observation and represents the uncertainty in the observation due

predominantly to instrumental noise. The second variance was

calculated from the condition that the x2/degree of freedom of the
postfit residuals for each baseline be unity (see below) . This

variance is used to account for the pseudo-noise contribution from.

the inadequate models used to represent the data.

Data Analysis

The observations were analyzed using a sequential, weighted-

least-squares technique (see, for examples, Kaula, 1966; Morrison,
1969), with the weights being taken as the inverses of the variances

of the noise contributions to the observations. Unless otherwise
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- stated, the following classes of parameters were estimated in the

solutions to be discussed below: (i) Coefficients of one to three

polynomials in time, each of first or second order, and in some

cases, coefficients of diurnal sine and cosine functions. These

polynomial and trigonometric functions were used to represent the

relative behavior of the hydrogen maser Oclocks" at the different

sites; (ii) a daily bias correction to the neutral atmosphere

propagation delay calculated from surface weather data; (iii) all
crust-fixed site coordinates (assumed time independent), except

for those of one site which were used to define the origin of the

coordinate system (see Herring At a]., 1981); (iv) All radio source

positions, save for one parameter -- the mean correction to the

right ascensions of seven radio sources which served as the right

ascension origin. (The seven radio sources chosen were 0851+202,
14 0923+392, 1226+023, 1641+399, 2134+004, 2200+420, and 2251+158);

(v) daily corrections to the pole position and UTl given by BIH

Circular D; (vi) daily corrections to the nutation angles given by

the IAU-1980 nutation series (to be discussed separately in Herring
.etLal., 1983).

In addition to these parameters, we sometimes estimated a

correction to the relationship between the elevation angle of the

measurement and the air mass through which the signal passed (this

relationship will be called the "mapping function"). We parameterized
the mapping function given by Chao (1972), by introducing a parameter

corresponding to a fractional correction to one constant in his

empirical formula:

te = t/[sin(e) + (l+a)r,/(tan(e)+r2 )J , (1)

where te is the atmospheric delay for an observation at an elevation

angle, g, when the zenith delay is tz, and r1=0.00143 and r2=0.0445
are two constants estimated (by Chao) by relating his empirical

model to a ray-trace model, and a is the parameter we introduced.
VLBI data analysis also involves a number of subjective aspects:

I°
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(i) the parameterization of the relative behaviors of the hydrogen

masers at the radio telescopes, (ii) the parameterization of the

atmospheric delay behavior at each site, (iii) data editing, and

(iv) data reweighting (see discussion below). We have already

discussed the the models which are used to parameterize the relative

clock behaviors and the atmospheric delays. The polynomial order

and the epochs of the boundaries between estimates of the polynomial

coefficients are decided on by the analysts after a visual inspection

of the postfit residuals from a solution which utilizes relatively

simple parameterizations of the clock behavior. Trends in the

residuals which are radio-source independent are usually associated

with clock variations. Similarly, trends which are elevation-angle

dependent are usually associated with atmospheric variations. In

our analysis a single atmospheric parameter was estimated each day

at each site and served to remove any constant biases in the surface

weather model calibration of the atmospheric delays. Data editing,

i.e. the elimination of observations which appear to be defective,

is also subjective in nature. However, an examination of the

observations which in the past have been defective, the reason for

the defect can often be established, thus allowing future observations

to be checked for this condition. Consequently, as the the use

the Mark III has increased, a series of quality checks has been

developed which allow defective observations to be detected before

the analyst examines the data. These checks have eliminated many

of the subjective decisions associated with data editing. We

discuss shortly the techniques which we used to ensure that at

uniform editing criterion was used throughout our analysis. Data

reweighting is the final subjective aspect of the data analysis we

need to discuss. The scatter of the postfit residuals from a Mark

III least squares solution is nearly always greater than the standard

deviations of the observations would indicate. This greater scatter

occurs because the observation standard deviations, which are

calculated from the signal-to-noise ratio (SNR) of the observations,

do not take into account the errors in the mathematical models used
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to analyze the data and in the random variations of the frequency

standards. The contribution of these additional uncertainties can

be accounted for by adding a constant variance to the SNR-calculated

- variances and by using this new variance to calculate the weights
used in the weighted least-squares solution. This operation is

call "reweighting." The baseline-dependent variance is computed

from postfit residuals and, hence, depends on the solution used to

- generate these postfit residuals. We discuss below the techniques

we used to determine these baseline-dependent variances.

Our analysis was carried out in several stages with the aim

of generating a data set which was both uniform in its editing and

reweighting criteria. We firstly carried out a solution using all

of the observing sessions. We then reanalyzed each session separately

with the radio-telescope and radio-source positions constrained to

the values obtained from the analysis of all of the data. We

rejected all observations which had postfit residuals greater than

three (reweighted) standard deviations. Using this edited data

set, we calculated baseline-dependent variances which, when added

to the SNR variances of the observations, would make the X r

degree of freedom of the postfit residuals for each interferometry

approximately unity. Since both the editing and the reweighting

depend on the the station and source positions used in the analysis

of each session, we repeated the above procedure three times to

achieve convergence. The baseline-length estimates changed by up

to 3.6 standard deviations (third iteration, formal) during these

iterations. (The largest change was 3.6 cm for the Owens Valley,

to Onsala baseline.) The average change of the baseline-length

estimates was 1.5 standard deviations (corresponding to approximately

1-2 cm; see Table 1).
The final data set used to study the accuracy of the baseline

length estimates consisted of 22,892 group-delay observations of

which 15,928 were used in the sequential weighted least squares

solution. The data which were not used either failed quality checks

during correlation (5,987 observations), or were rejected by the

.2
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editing criterion discussed above (977 observations). The large

- number of observations rejected by the "three-sigma" criterion is

probably due to instrumental errors which were not detected during

* correlation (especially in the early observing sessions before the
development of an extensive set of correlator checks), and to large
postf it residuals caused by inadequate models. In addition to this

data set, we also analyzed a further 8,688 observations obtained

in observing sessions carried out between January 1982 and June

- 1983, which were not available when the accuracy studies were
carried out. The combined data set was used to study the precision

of the baseline length estimates.

The data set

The data set of nearly 16,000 group delay observations,

* described in the previous section, was used to study the effects
of the neutral atmosphere on the estimates of baseline length.
The specific tests we performed were: Mi limiting the data set

to observations whose elevation angles were above a minimum value

* called the "elevation-angle cutoff"U; (ii) comparing solutions with
- and without a surface weather model prediction of the neutral

atmosphere delay; and (iii) comparing the solutions with and without
-i estimation of a correction to the atmospheric mapping function.

The result of limiting the data set to observations whose

elevation angles were greater than the elevation cutoff are summarized
in Figure 1. (A zero degree elevation-angle cutoff simply means

- that all available data were used in the solution. The actual

- minimum elevation angle of any observation in the data set was

- 3?5.) The error bars shown in Figure 1 are the standard deviations

* of the differences in the baseline-length estimates (since the
* solution with the lower elevation cutoffs contain data which were

* not used in those with higher elevation-angle cutoffs, there should

* be differences between the solutions consistent with these standard
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*deviations). (It is easily shown that the variance of the difference

is the difference of the variances of the two solutions, in the

sense of the larger variance (solution with the higher elevation-angle

cutoff) minus the smaller variance (the solution with the lower
*elevation-angle cutoff).)

Figure 1 shows that the changes in the baseline-length estimates

when the elevation-angle cutoff is changed, are not in accord with

the statistics of the difference. Systematic differences of up to
1 cm exist between the 00 and 100 cutoff solutions. The differences

between the solutions with the 100 cutoff and those with the other

cutoffs do not show such strong systematic trends, but still show
scatter larger than the appropriate standard deviations woula
indicate. In particular the differences between the solution with
100 and 200 cutoffs show large differences (between 3 and 5 cm)
for baselines longer than 8,000 km. These large differences, and
their associated large uncertainties, could be due to geometric
degeneracy. (Many of the low-elevation-angle observations in this

data set were included to strengthen the geometry of these very

long baselines.)
To further investigate the origin of the systematic differences

between the solutions using different elevation-angle cutoffs, we

compiled the statistics of the postfit residuals from these solutions.

We accumulated the statistics in a matrix whose row and column
indices were defined by the air masses (calculated from the elevation

angles) at the two sites for each baseline. The air mass bins were

0.5 air masses wide and ranged between 1.0-1.5 and 14.0-14.5 aie

masses (the upper limit corresponds to an elevation angle of 3?1).
We present in Figure 2, for the 00 cutoff and the 100 cutoff

solutions, the statistics of the column of this matrix for which
the air mass bin was 1.0-1.5 at one end of the baseline. We show

the weighted mean and the normalized-root-mean square (NRMS) scatter

of the residuals in each bin. (The NRMS scatter is the square root
2of the x /degree of freedom for the residuals in the bin. We plot

this quantity, rather than the x2 /degree of freedom, to decrease
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the dynamic range of the plots.) The error bars shown for the
weighted means are one standard deviation estimates, based on the
reweighted standard deviations of the observations. The 95%

confidence intervals shown for the NRNS scatter are also based on
the reweighted standard deviations.

It is clear that the NRNS scatters show a dependence on the
air mass in both the 100 and 00 cutoff solutions. This elevation

angle dependence is not accounted for in the observation standard
deviations, i.e., the low elevation angle (high air mass) observations

are overweighted weighted in these analyses. The effects of this

higher weighting can be seen in the weighted mean results. The
positive bias of the weighted means in air mass bins below 106

elevation angle (as seen in the 10 elevation angle cutoff solution)
are considerably reduced in the 00 cutoff solution. This reduction
in the weighted means implies that this systematic bias has been
absorbed into the parameter estimates.

To test the hypothesis that the relationship between air mass
and elevation angle could be systematically biased, we carried out
a solution using a 00 elevation angle cutoff, but with a site- and
observing-session dependent correction to the mapping function
estimated. The mapping function correction was estimated at a site
only when there were observations with elevations angles less than
100 . We show the difference between this solution and the solution
with the 100 cutoff (without a correction to the mapping function
estimated) in Figure 3. The error bars shown on the plot are the
same as those in Figure l.a. Figure 3 does not show the systematie
trends of Figure l.a indicating that an error in the mapping function
could be partially responsible for the differences between the
solutions that use different elevation angle cutoffs. While
estimating corrections to the mapping function seems to remove the
systematic difference between the solutions with different elevation
angle cutoffs, the estimated values of A (see Equation 1) have
large scatter with weighted mean values of only a few percent.
(The correction to ri at Onsala was 4% with a RMS scatter of 11%.)

q'
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However, the magnitude of the weighted mean values are consistent

with the elevation angle dependence of the postf it residual mean

values shown in Figure 2. These studies of the atmospheric mapping
function are very preliminary and certainly need to be continued.

We could, for example, assume that the correction is site and

observing session independent and estimate a single value for the

correction from all of the data. (Our software would need some

changes to allow this estimation.) An alternative approach would

be to carry out specialized observing sessions in which a combination
of very low elevation and high elevation angle observations were

made in rapid succession. These observing sessions at a number of

* sites and in different seasons could allow accurate estimation of

corrections to the mapping function.

We further investigated the effects of our atmospheric delay

* models by repeating the solution with the 100 elevation angle cutof f
without the surface weather model prediction of the atmospheric
delay. (In both solutions we estimated zenith delay corrections

- once daily at each site.) The differences between the baseline-length
estimates from these two solutions are shown in Figure 4. Again

we see a bias between the baseline-length estimates which increases
-- with baseline length. (In this case the error bars shown are the

* standard deviations of the baseline-length estimates.) These results

indicate that care should be taken in combining data sets with and
without surface weather model calibration of the atmospheric delay.

In Table 1 we give the baseline-length estimates obtained from
the solution with the 100 cutoff with surface weather models

calibration of the atmospheric delay We also give the WRMS and NPMS

- scatters of the baseline-length estimates, about these values,

* obtained from a solution in which the source positions were

* constrained to the values obtained from the ensemble of data and

* the station positions were estimated separately for each observing

session. We also tabulate the WRMS and NEMS scatters of baseline-length

estimates from same type of analysis with the 00 cutoff. These
* scatters highlight why we believe low elevation angle observations
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should be studied. In nearly all cases the WRMS scatter of the

baseline-length estimates from the solution with the 00 cutoff are

less than those from the solution with the 100 cutoff, indicating

that the solution with the 00 cutoff is more precise than that with
the 100 cutoff. In both cases the normalized RMS scatters (which

should be unity if the scatter of the results were in accord with

their statistics), generally range between 1.5 and 2.0. These

values indicate that the uncertainties of the baselines-length

estimates are *optimistic" by a factor of between 1.5 and 2.0.
The final entry in Table 1 is the contribution of the new relativistic

correction to the baseline length. (We include these values so

that our results may be compared with previously published values

of these baseline lengths.) This contribution has an average value
of -14 parts in 109 (Shapiro Pal, 1984).

We show the estimates of the Westford-to-Onsala baseline length
for each observing session in Figure 6. The slope of a linear

least squares regression through these results (from 3.0 years of

data) is 1.6 + 0.5 cm/yr (the uncertainty is the statistical estimate

of standard deviation, scaled by the NRMS scatter of the baseline-length

estimates).

Estimates of some of these baseline lengths have been published

in the past; we now compare our estimates with those previously

published values. In 1981, the first estimates of the Haystack-to-Onsala
baseline were published (Herring et al., 1981) At the time we

felt that this estimate of the baseline length was uncertain at
only the subdecimeter level. However, that value (after compensatiort

for the relativistic correction; see Table 1) is 21 cm longer than

the value given here; more than twofold worse than we had expected.
We now believe that the estimate obtained from the single-frequency-band

Mark I data was positively biased by an amount greater than expected

because of the neglect of the ionospheric delay.
More recently published values (Robertson and Carter, 1982)

for the Haystack-to-Onsala baseline length, estimated from a subset

of the data used here, have also been positively biased by 10 cm.

I
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In these solutions some source positions were held fixed at the

values obtained from the analysis of Mark I data (Robertson and

Carter, 1982). The value given by Rogers eL a l-, 1983, agree within

2 cm with the value given here. As we have seen, differences of

2 cm can be accounted for because of slightly different solution

techniques. (These results were also obtained from a subset of

the data analyzed in this paper.)

Conclusions

We have presented results which show intercontinental distanct

measurement using the Mark III VLBI system have a repeatability of

-2.6 cm for 40 observing sessions. We have also attempted to study

the accuracy of these results by carrying out a number of repeatability

tests. These tests have shown that the estimates of the baseline

lengths can change by several centimeters depending on the data

set and the atmospheric calibrations used in the analysis. (For

the Westford-to-Onsala baseline, the changes in the baseline lengths
of up to 2 cm occurred.)

The estimated rate of change of the Westford to Onsala baseline

is 1.6 ± 0.5 cm/yr. The standard deviation given is the statistical

estimate of the rate from a weighted least squares regression

through the baseline length estimates, scaled by the NRMS scatter

of the these values about their mean. Although the rate of change

of the baseline length seems to be significant, we do not yet claim

to have detected motion between these two sites because the total

change in the baseline length over the three year period is only

4.8 cm. There is a possibility that this apparent change in the

length could be due to changes in the systematic errors which affect

our results. However, these errors are bounded at about the 5 cm

level and a continued lengthening of the baseline will be difficult

to dismiss as due to systematic error.

Our studies of the dependencies of the baseline length estimates

on elevation angle cutoff and on the statistics of the postfit
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residuals have indicated that the relationship between elevation
angle and air mass may be systematically biased. This subject

*needs further study because our results also show that the
repeatability of the baseline lengths is better when low elevation
angle observations are included in the analysis. However, this
improvement in the repeatability does not necessarily imply an

* improvement in accuracy.
A problem which we need to solve is the assessment of "realistic"

standard deviations of the baseline-length estimates. In nearly
all cases the WRMS scatter of the baseline length estimates about
their values obtained from the ensemble of data are 1.5 to 2.0
times the amount expected from the standard deviations. There are
two reasons for this underestimation of the standard deviations.
Firstly, unmodeled or inadequately modeled effects such as water
vapor delay, frequency standard variations, radio source structure,
and ocean loading will contribute to the variability of the baseline
length estimates. These variations are not totally accounted for
in the least squares estimates of the uncertainties (to somie extcnt
they are accounted for through the reweighting of the observation
uncertainties). In a future paper we will discuss methods which
can be used to assess these contributions to the uncertainties to
the baseline length estimates. Secondly, there is a correlation
between the pseudo-noise contributions (due to the unmodeled site

* dependent errors) to the observations involving a given site at
-each epoch. (There are also possibly temporal correlations betweek

the model errors.) We currently do not account for these correlations
* in the least squ- res solutions which will cause the parameter
* estimate uncertain. es to be overly optimistic. We are currently
* developing software which will calculate the expected correlations

between observations based on the variances added to the SNR
variances.

The VLBI data used in the analysis for this paper, and additional
*data obtained in more recent observing sessions, can be used for

many purposes. In future papers we will discuss the performance

* -A -
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of the Mark III VLBI system, the positions of the pole with respect

to the crust of the earth and in inertial space (or strictly the

quasar reference frame) which were estimated in these solutions,

techniques to eliminate the polynomial modeling of the relative

behavior of the hydrogen masers (by use of Kalman filters), and

the precision and accuracy of the calibration of water-vapor delay

with water vapor radiometry.
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Tab11l Summary of baseline-length estimates

Baseline # of length' sigma+ WIiS+ N S+  WRS* NMS* Relativity

exps. (M) (M) (M) (m) correction

HA-CI 7 5,072,314.364 + 0.006 0.029 2.16 0.028 2.28 -0.069

HA-HR 30 3,135,640.956 + 0.004 0.017 1.25 0.017 1.28 -0.045

HA-(i 22 3,928,881.556 + 0.003 0.015 1.50 0.015 1.54 -0.054

HA-QON 25 5,599,714.373 + 0.005 0.026 1.60 0.023 1.82 -0.077

HA-WE 6 1239.395 + 0.002 0.004 1.14 0.004 1.14 -0.000

HA-EF 6 5,591,903.441 + 0.006 0.024 1.53 0.026 1.74 -0.077

HA-NR 3 845,129.839 + 0.002 0.010 2.31 0.009 2.31 -0.012

CH-HR 7 7,663,737.269 + 0.010 0.060 1.88 0.063 1.98 -0.105

CH-( 7 7,846,991.133 + 0.009 0.047 1.81 0.050 1.92 -0.106

Q1-ON 7 1,109,864.304 + 0.003 0.004 0.46 0.008 1.00 -0.016

CH-WE 0 5,073,265.270 + 0.007 -0.069

CH-EF 0 589,796.542 + 0.004 -0.008

CH-NR 0 5,834,122.784 + 0.008 -0.078

HR-0V 26 1,508,195.356 + 0.002 0.012 1.41 0.012 1.41 -0.023

HR-ON 37 7,940,732.104 + 0.009 0.063 1.49 0.054 1.38 -0.111

HR-WE 120 3,134,927.971 + 0.003 0.021 1.47 0.021 1.51 -0.045

HR-EF 5 8,084,184.751 + 0.011 0.064 1.54 0.043 1.05 -0.113

HR-NR 4 2,354,633.977 + 0.003 0.010 1.52 0.009 1.25 -0.033

c)-CN 26 7,914,130.853 + 0.008 0.039 1.41 0.035 1.44 -0.110

OV-WE 28 3,928,579.286 + 0.004 0.017 1.63 0.015 1.51 -0.055

O-EF 6 8,203,742.365 + 0.010 0.049 1.99 0.048 2.00 -0.114

OV-NR 4 3,324,244.142 + 0.004 0.009 1.32 0.009 1.35 -0.046

CN-WE 40 5,600,741.326 + 0.006 0.026 1.43 0.023 1.58 -0.078

ON-EF 5 832,210.499 + 0.003 0.008 1.28 0.007 1.18 -0.013

ON-NR 2 6,319,317.417 + 0.008 0.027 1.19 0.018 0.88 -0.087

WE-EF 0 5,592,850.979 + 0.007 -0.077

WE-NR 4 844,148.075 + 0.002 0.003 0.70 0.003 0.71 -0.012

EF-NR 1 6,334,648.392 + 0.009 0.067 2.74 0.069 2.82 -0.087
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Table 1 Continued.

+ 100 elevation angle cutoff solution

*00 elevation angle cutoff solution

The codes for the stations are: HA Haystack, Massachusetts; WE

Westford, Massachusetts; ON Onsala, Sweden; CH Chilbolton, England;

EF Effelsberg, Federal Republic of Germany; NR National Radio

Astronomy Observatory, Virginia; HR Harvard Radio Astronomy Telescope,

Texas; OV Owens Valley Radio Observatory, California. The

repeatability of the estimates of baselines involving Westford have

been calculated including observing sessions which used the Haystack

observatory, by inferring the lengths to Westford from the lengths

to Haystack. The weighted RMS scatter of the postfit residuals

from the 100 and the 00 cutoff solutions were 0.090 nsec (for 15,615

observations) and 0.091 nsec (for 15928 observations), respectively.
The speed of light used to convert measured delays to distances

was 2.99792458x108 m/sec.
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Figure Captions

Figure 1. Differences in the baseline length estimates between
solutions with different elevation angle cutoffs. The error bars

represent the standard deviation of the difference between the
estimates due to the additional data included in the lower elevation
cutoff solutions. a) 00 elevation angle cutoff solution minus the

* 100 elevation angle cutoff solution; b) 100 elevation angle cutoff
solution minus the 150 elevation angle cutoff solution; c) 100

* elevation angle cutoff solution minus the 200 elevation angle cutoff
solution i

* Figure 2. The accumulated statistics of the poatfit residuals in
* air mass bins between 1 air mass and 10 air masses for the 00

cutoff and the 100 cutoff solutions. The normalized RMS (NRMS)
scatter is the square root of the chi-squared per degree of freedom

* for the postf it residuals. The 95% confidence intervals for each

air mass bin give the region in which the NRMS scatter should lie

(with 95% probability) if the scatter of the postf it residuails were
in accord with their statistics.

Figure 3. Differences of the baseline-length estimates betweenI

the 100 elevation angle cutoff solution and the 00 elevation angle

cutoff solution with a correction to the atmospheric mapping function

* estimated.

the 100 elevation angle cutoff solutions with and without a surface

*weather model calibration of the neutral atmospheric delay. In

each solution we estimated corrections to the zenith delay at each

site.

Figure 5. Estimates of the Weatford-to-Onsala baseline length from

the 100 elevation angle cutoff solution. The station positions

1* . - 4" - .*
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were estimated separately for each observing session with the source

positions constrained to the values obtained from the global solution

based on all of the data. The uncertainty of the slope has been

scaled by the NRMS scatter of the individual length estimates.

ii
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Figure 1.
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Figure 1 Continued
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Figure 3
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Figure 4
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Abstract: VLBI observations made in September and October 1980
with up to five telescopes distributed over northern Europe
and the United States yielded values for solid earth tide
parameters:

h - 0.62 i 0.01 (radial Love number)
I - 0.11 ± 0.03 (horizontal Love number)
.* - i 1? (tidal lag angle)

Keywords: Love numbers, tidal lag, radio interferometry

1. Introduction

Very Long Baseline Interferometry (VLBI) has been used since 1969

to determine vector separations between radio telescopes and posi-
tions of radio sources. Initially, the precision of baseline length

determinations was about 1 m (HINTEREGGER et al., 1972). Since

then the precision of baseline length determinations has improved

considerably and is now under 5 cm for baselines from 1000 km to

4000 km (ROBERTSON et al. , 1979) and subdecimeter for intercontin-
tal lengths of about 6,000 km (HERRING et al., 1981). Observations

made with the new Mark III VLBI system should allow baseline

lengths to be determined with a precision of approximately 1 cm.

As the precision of observations increases, we must ensure that the
models are also improved for the interpretations of the observa-

tions.

Solid earth tides have long been incorporated in the model used
to analyze VLBI observations, and preliminary results have already

Publisher: E. Schweizcrbart'sche Verldgbuchhandlung. D-7000 Stuttgart
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been obtained for the radial Love number. h (ROBERTSON, 1975).
Simultaneous analyses of six (6) years of VLBI data, obtained with

the Hark I system (RYAN et al., 1981) yielded h - 0.620±0.005. The
standard deviation of the radial Love number is based solely on the

scatter of the postfit residuals; the true standard error is likely

to be about a factor of three larger, partly owing to the scatter

of results from disjoint data sets. In this paper we present our
determinations of radial and horizontal Love numbers and the tidal

lag angle, from analyses of two weeks of VLBI data obtained during

September and October 1980 with the Hark III system.

2. Data analyses

The analyzed data consisted of interferometric group delays

(SHAPIRO, 1976) which were obtained during two one-week sessions,
separated by two weeks, in September and October, 1980. Up to five

antennas were involved in each session. Radio telescopes in West-

ford, Massachusetts, Ft. Davis. Texas, Big Pine, California, and

Onsala, Sweden participated in all sessions. In the first two
days of the first week. the radio telescope at Bonn, FRG, partici-

pated, and the radio telescope at Chilbolton, England, participated

for all of the second wee . All observations were made with the
dual-band Hark III system with center radio frequencies of about

8.3 GHz, and 2.3 GHz for the two-frequency bands. A multichannel
bandwidth synthesis technique (WHITNEY et al., 1976) was used, with

each recorded channel having a bandwidth of 4 MHz (upper & lowier side-

bands); synthesized bandwidths were 300 MHz at 8.3 GHz; 75 MHz at 2.3 GHz.

The theoretical models and the coordinate system definitions

used for the analyses are summarized in HERRING et al. (1981). The
dual-band observations were used to calibrate the ionospheric

delays and surface weather data were used to estimate the tropo-

spheric delays. Appropriate parameters for each day were included

in the theoretical model to represent relative clock behavior and

possible residual errors in the tropospheric path delay.
Because this paper deals with the determination of the Love

numbers for the solid Earth, only the tidal models will be described
in detail. For convenience in calculation, the tidal disturbing

potential is modified and written as

V - GM (1/lul - r/I~i r a/Ir1 ), (1)

V
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where r is the geocentric position vector of the disturbing body,

rotated about the Earth's rotation axis by the tidal lag angle *,
a is the geocentric position vector of the radio telescope

and GM is the product of the gravitational constant and the mass of

the disturbing body.

Using Eq. 1, the disturbing potential and its derivatives with

respect to latitude and longitude. ;V/Be and 3V/aX, respectively,

are calculated for each observation at each telescope foom ephemeris

positions for the sun and moon. These values are then converted

to displacements using

ur h (V)g-

u L (avlae )g-1  (2)

u - (av/ax) (gcos 6)1,

where h and L are the radial and horizontal Love numbers, respec-

tively, g is the normal acceleration of gravity at the site, and

Ur, ue, and u. are, respectively, the radial, north, and east dis-

placements of the telescopes.

The displacements are represented very accurately using Eq. 2,

since the disturbing body positions are available from other compu-
tations in the VLBI data analyses. The disadvantage in using Eq. 2
is the required use of Love numbers and lag angle that are indepen-

dent of the harmonic content of the forcing function. The parameters

h. 1, and # and their covariances are estimated simultaneously
with the other relevant parameters form the VLBI data using stan-

dard weighted least squares.

3. Results

Figures 1. 2 and 3 present our estimates of the tidal lag angle

and the radial and horizontal Love numbers. Two features are

apparent: 1) the scatter of each of the results about its weighted
mean is up to 10 times the formal standard deviations of a single

estimate, and 2) the distribution of the individual results about

their weighted mean seems to be systematic in each case. These

systematic trends might arise at least in part from neglected

perturbations on the earth tides due to ocean-loading effects.

The variation in the formal standard deviations of the estimates

of the tidal parameters is approximately in accordance with that

of the number of usable observations obtained each day. These

-" " -""" '""" "" '"' " " "" " ..... ".
.. .¢ : , ; ,:c . z, , :, , ¢ . .',.' ', , . '. . ... " • ". '
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numbers ranged between 236 for October 1, 1980 with four stations

participating to 777 for October 22, 1980 with five stations par-

ticipating. The small numbers of observations obtained on October

1 and 2 were due to a telescope pointing problem, subsequently

fixed , at the antenna in Westford, Massachusetts. Even accounting

for the variations in formal standard deviations, the scatter in

the results from the first week are greater than that from the

* second week. There are several possible explanations for this

difference: 1) During the first two days of the first week, the

* . antenna in Bonn, FRG participated. If the Love numbers are a

function of the station locations, then the average of the estimates

fromi these two days could be expected to differ from that for the

remainder of the week; and 2) For two days of the first week, all

observations west of the meridian were lost at the Westford antenna.

This bias in the distribution of the observations on the sky could

increase the effects of systematic errors on the results.

.7.7

.70.

.50. 1
26 26 30 2 16 is 20 22
SE -53? OCT DATE (1960) OCT

Figure 1. Independent estimates of the radial tove number, h.
The error bars represent plus and minus one standard
deviation, determined by the addition of a constant to the

* variance for each measurement such that I' par degree of
aredm as unty fo ac weighted least squares solution.

The quoted uncertainty for the weighted mean was calculated by
multiplying its theoretical standard deviation by the ratio of
the scatter of the Individual results about their weighted
mean to the expected scatter due to random error.

.
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Figure I shows the weighted mcan of the results from this analysis;

h - 0.62 ± 0.01

L - 0.11 ± 0.03 (3)

= 10 ±1 0

where the quoted uncertainties are based on the scatter of the

individual results about the weighted mean.
The determination of h is consistent with the values obtained

previously from other VLBI data (ROBERTSON. 1975 and RYAN et al.,
1981).

Love numbers and lag angle!, for each telescope location were

also estimated. The largest fractional difference between such an

estimate for h and the corresponding global value occurred for

Big Pine, California, which has a value of h- 0.73 ± 0.03. In view

of the systematic, time-dependent behavior and the scatter of our

various results, we do not consider this difference to be signifi-

cant.

The values of the Love numbers obtained in this study also agree

well with values determined previously using other techniques.
Theoretical values of the Love numbers typically range from 0.60 to

0.62 for h, 0.08 to 0.09 for I (MELCHIOR, 1978), with the variation

resulting from the choice of earth model and core rigidity.

Experimental determination of the Love numbers using gravimetric.

tilt and extensometric observations generally give combinations of

the Love numbers (h, L and k) which agree with the theoretical

estimates although the results can be significantly perturbed by

ocean tides and local geology. The tidal lag angle is also obtained

from these techniques. Estimates of its value range between ±5°.

depending on tidal component, with quoted uncertainties that range

from 00.1 to 30 with the larger lag angles associated with the

larger uncertainties (MELCHIOR, 1978).

Analyses of orbits of earth satellites also yield estimates of

the lag angle. Recently, CAZENAVE & DAILLET (1981) obtained lag

angles of 00.32±00.28 for the M2 earth tide. They also obtained

10. 41±00.28 and 00.76±00.29, depending on the choice of M2 and 01

ocean tide models.

I
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Figure 2. Independent estimates of the horizontal Love number,
t. (See Figure 1 for explanation of error bars.)
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Sfigure 3. Independent estimates of the solid-earth tidal g
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6. CONCLUSIONS AND DISCUSSION

The Mark III VLBI system is potentially capable of

measuring intercontinental distances with one centimeter

precision. In this thesis, we have tried to determine the

proximity of the Mark III system to this goal.

The analysis of the algorithms used to determine the

group delay, the phase-delay rate, and the visibility phase,

from the signals recorded at the radio telescopes, did not

reveal any large errors in these algorithms. However, when a

series of tests was performed on the VLBI measurements, we

found that the apparent noise in these measurements did not

have the statistical properties which were calculated from the

signal-to-noise-ratio (SNR) of the observations. There were

clearly instrumental deficiencies.

Analysis of the phase versus frequency response of the

Mark III showed that the system has large dispersions. The

origin of the dispersion has not yet been determined, but it

is hoped that the properties of the dispersion given in this

thesis will aid in isolating the origin. The main properties

of the dispersion are (i) it (the dispersion) varies rapidly

with frequency (variations of up to 400 have been observed

over a 4 MHz change in frequency, see Figure 3.1.6.); (ii) it

can be very large; (iii) it varies in amplitude smoothly on

time scales of months, and occasionally shows discontinuities,

see Figure 3.1.10. One possible cause for the dispersion

which seems to match much of the available data is a

~~~~~........ • . . ...... .. ................ .. . ...... .....+ . . .- +-i' .+ " '+ % %.. . .. . . . . . . . . . . . . . . . . ..-. . . .... . . . . ..'. .""...,. . . . . ..'. . . ...". ." " + ."-' ." .".. ." " .".. " ".. +.+ .
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corruption of the phase calibration pulses. In particular,

the possibility that extra pulses from the pulse generator,

which should be removed (or gated) from the phase calibration

signals, are being injected into the receiver seems to require

further investigation. There are also other possible causes.

Among these, "ripple" in the video convertors, i.e., non-lin-

ear variations of phase with frequency across the video con-

verter bandwidth, could explain the discontinuity which was

seen in the Westford-Ft. Davis interferometer residual phases.

Other quality checks indicated that not all of the

apparent errors in the group delays can be explained by phase

calibration system errors or video converter ripple. The

group delay closure errors did not match the SNR statistics.

These closure errors seem to be explained by the leakage of

left-circularly polarized radiation into the output of the

nominally right-circularly polarized feed horns.

Probably the most powerful test we applied to the Mark 10

III group-delay measurements was the investigation of the

prediction of phase-delay ambiguities from the group-delay

measurements. These studies revealed that the group-delay

measurements seem to drift relative to the phase delays. The

application of the phase-delay ambiguity prediction techniques

to observations from a geodetic experiment yielded results

which indicated that the systematic variations of the group

delays relative to the phase delays, was mostly independent of

the radio source being observed and the orientation of the

radio telescope. These results indicate that the group delay
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errors probably arise from the Mark III equipment, rather than

from external sources, such as antenna deformation and source

structure. These latter two effects do affect the apparent

group delay errors, but they to not appear to be the major

source of these errors.

A compilation of the statistics of the implied group

delay errors i.e., the differences between the observed values

of the group delays and the estimates of these values calcu-

lated from the phase delays, indicate that the standard devia-

tions of the group delays, computed from the assumption of

Gaussianly distributed random noise, are deficient in two

respects. Firstly, there appears to be a proportional error

in the computed standard deviations of between 1.1 and 1.2,

which is probably due to correlator non-reproducibility and

the dispersion in the system. Secondly, there appears to be a

threshold performance limit which cannot be penetrated, even

with very high SNR observations. At X-band (=8.34 GHz), this

limit was 0.040 nsec (=1.2 cm) and 0.015 nsec (f0.5 cm), for

the two experiments analyzed (see Figure 4.3.8). The S-band

(=2.3 GHz) system has a performance limit of 0.15 nsec (=4.5

cm) for both of the experiments analyzed. The difference in

the performance of the X- and S-band systems can be partially,

but not totally (see Table 3.1.1), explained by the difference

in the spanned bandwidths in these two frequency bands.

(Typically 300 to 350 MHz is spanned at X-band while only

75-80 MHz is spanned at S-band.)

We also presented results which show intercontinental

FJ2~ IL
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distance measurements with a repeatablity of 2.0 cm, from 40

experiments spanning 3 years, after a "best-fit" linear trend

was removed from the data. Studies of the solutions which

generated these results show that the accuracy of the length

estimate, from the ensemble of experiments, is at the several

centimeter level rather than at the sub-centimeter level which

is implied by the repeatability and the number of experiments

in the ensemble.

Studies of the the dependencies of the baseline length

estimates on the minimum elevation angle of observations

included in the data set, have indicated that the relationship

we used between the elevation angle of the observation and the

airmass through which the signal propagated, may be

systematically biased.

We need to determine "realistic" standard deviations of

the baseline length estimates. In nearly all cases the

weighted-root-mean-square (WRMS) scatter of the baseline

length estimates about the global solution values were 1.5 to

2.0 times the amount expected from their standard deviations.

There are two reasons for this under estimation of the

standard deviations of the baseline length estimates.

Firstly, unmodelled or inadequately modelled effects such as

water vapor delay, radio source structure, and ocean loading

will contribute to the variability of the baseline length

estimates. These variations are not totally accounted for in

the least squares estimates of the standard deviations (to

some extent they are accounted for through the reweighting of

", .,' ..-.'.-.-,.' "--" . .'.'-.. -" ,....................".. ..."...-'..-.."..-.........-.....'-.,-..-.. "'
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the observations). Secondly, there are probably correlations

between the pseudo-noise contributions to the observations

from site dependent (unmodelled) systematic errors. We

currently do not account for these correlations in the least-

squares solutions, which will cause the uncertainities of the

parameter estimates to be too small.

VLBI data acquisition and analysis has progressed

considerably in the past 14 years. The precision of baseline

length determinations has decreased from the meter level to a

few centimeters. The factors that have limited the precision

of the baseline length estimates has also changed considerably

over this period of time. Initially, the equipment was the

* :-major limitation (Whitney, 1974). Before the introduction of

the Mark III dual-frequency band system, the ionospheric delay

was probably the major limiting error source (Robertson,

1975). Currently, it is not clear which deficencies in the

data analysis or the equipment are the major error sources.

To considerably improve upon the current precision will prob-

ably require the solution of a number of distinct problems.

The delay due to atmospheric water vapor is likely to be the

most serious error source at the moment. Recent improvements

in the water vapor radiometer data acquisition techniques may

allow this delay to be accurately determined. However, there
0

are other sources of errors which are probably important, and

also need to be studied. These error sources include

frequency standard instabilities, instrumental errors, radio

source brightness distribution, oceaning loading, the dry

*.

0'
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atmospheric delay and antenna deformations.

In 14 years, the precision of VLBI baseline length deter-

minations has improved by almost two orders of magnitude.

With further study and development, we should be able to

improve the precision by another factor of three in the next

14 years.

9.
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Appendix A. Relationship between the delay resolution

function and least squares.

The delay resolution function (Rogers, 1970) is one of

* the most important functions in geodetic VLBI. Maximization

of this function provides a means of estimating the group

delay, phase delay and phase delay rate. (These will be refer-

red to as the VLBI observables.) As we approach being able to

measure intercontinental distances with 1 cm precision, it

becomes critical that we fully understand the interaction

between these estimation algorithms and the VLBI instrument-

ation and environment. In this appendix, the relationship

between the usual method of maximization of the delay resolu-

tion function and a least-squares approach to the estimation

problem will be described. We introduce the least-squares

approach because it allows quantitative determination of the

effects of phase errors, dispersions, and data loss on the

VLBI observables.

Before developing the equivalence of the maximization of

the delay resolution function and the least squares estimator,

we review the concepts of group delay, phase delay and phase

delay rate. We then review the development of the delay

resolution function which is shown to be a maximum likelihood

estimator, highlighting the assumptions made during the deri-

vation. Finally, before showing the equivalence, we consider

some of the practical details of computing the maximum likeli-

hood or least squares estimates of VLBI observables.

*. . . . . . . . . *.* - ...
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The maximum likelihood estimator for the VLBI observables

is given by Rogers (1970) and developed in detail by Whitney

(1974). The review given here will follow closely the devel-

opment of Whitney with some modifications.

Two radio telescopes are assumed to be observing an

emitter of electromagnetic energy at radio frequencies. The

output of noiseless receivers, in noiseless surroundings, at

the two telescopes will be given by /Ta1 sI(t) and /a 2 s2 (t)

where Ta1 and Ta2 are the antenna temperatures at each site

and the dimensionless functions s1 (t) and s2 (t) are assumed to

be white noise with zero mean and unit variance. The antenna

temperatures are simply a convenient method of representing

the power being received by each antenna from the radio

source. In terms of the source strength So (given in Janskys,

where 1 Jansky = 10- 26 w/m -fHz), the antenna temperature for

observations in one polarization from a broadband, unpolarized

source will be (Krauss, 1966)

Ta - Ae SO / 2k (A.1)

where Ae is the effective area of the antenna and k is

Boltzmann's constant (1.38x10-23 Joule/K).

For the purposes of this section it is more convenient to

use the spectra of sl(t) and s2 (t) which will be denoted by

S1 (w) and $2 (w). The vector symbol denotes complex quanti-

ties. We assume that real and imaginary components of the

spectra are independent and Gaussianly distributed. While

these may seem somewhat arbitrary assumptions, the central

limit theorem of probability ensures that the sum of many

•, :' - - - ' , " " ". ,- .- "- . " - - " -"• .. . " p . ,"" " "-, , . '. -" '. ' ,, , ,, .-
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-> small independent sources of energy will indeed be close to

Gaussianly distributed, independent of the original probabil-

ity distributions obeyed by the individual energy sources (see

Section 2.1). We further assume that the spectral components

at each sampled frequency w are independent of each other.

There are two aspects to this assumption. Since we are only

able to observe the signal using a finite bandwidth B, and for

a finite duration T, the Nyquist sampling theorem states that,

provided we sample the signal at the Nyquist rate (1/2B),

* - there are only BT independent complex frequency components of

the spectra which can be determined from the data. The

* processing algorithms used in the correlator ensure that the

* correct number of cross spectral components are computed

(although as we will see later, these components are not

computed at the minimum frequency spacing determined by the

duration of the data) . The recording equipment is set to

sample the data at the correct rate. The second aspect of

this assumption is that the original spectra must have

independent components at the frequencies which we are able t~o

* sample. If this assumption is to be valid then the phases of

the spectral components of the signals should vary randomly

between frequencies. (We are considering the spectrum of the

0 signal not the cross spectrum of the data recorded at each

site. The cross spectrum phase at each frequency will be

related to the difference in arrival time of the signals at

* each site.) Since the signal spectrum is the sum of the
g4

spectra of the emission from many electrons (at least 10~
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electrons; see Section 2.1), the phase of this spectrum should

vary randomly.

The signals from which SI(w) and S2 (w) are determined

originate from a common source and hence should be related if

these signals are spatially coherent on scales of several

thousand kilometers. Thus, we assume that for each frequency

we can define a wavefront such that the phase of any spectral

component of the signal remains constant as we move along this

wavefront. Since the properties of the propagation medium

between any point on the wavefront and the source may change

as we move along the wavefront, the wavefront is not necess-

arily plane even for sources an infinite distance from the

radio telescopes.

The observed spectra are /T 1 (w) and ./TS 2 (w) and the

relationship between these spectra can be expressed as $2 (w) =

SI(M) e w where is a phase change which accounts for the

difference in arrival times of the signal at the two sites (we

will neglect, for the moment, that $, is a function of time

because of the rotation of the Earth). This phase change in

the general case is given by

r2 rl
$ = k (r).dr - R k (r).di (A.2)

0 0

where the integration is along the ray path, k (r) is the wave

vector (see, e.g., Jackson, 1975, Chapter 7) which may be a

function of position and frequency, and rl and i2 are the

position vectors of the receivers with respect to the source.

" "''" t ''" " "" ".................................... ....... "" . .................. .', ""$S
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If we assume (E) is independent of position, then Equation

(A.2) reduces to * = R .At where Ar = r2 - rl"

We now consider a simple case where the radio waves have

been emitted from a point source, an infinite distance from

the radio telescopes, and have propagated through a homogene-

ous nondispersive medium. For this case the wave vector k.

*l will be given by

V p s

where VP is the phase velocity of the propagation (independent

of frequency in this case, by definition) and As is a unit

vector in the direction from the receiver to the point source.

The phase delay, Tp, will be -6s.Ar/vp and hence the phase

difference, 0., between corresponding spectral components

becomes 0, = WT. We could use this formula directly to find

the phase delay by comparing the spectra of the signals

received at two sites and determining the difference in phase

between the corresponding spectral components. An alternative

(and equivalent) approach would be to multiply the spectra

together to form the cross spectrum. The phase of the cross

* spectrum (neglecting the noise contribution) at frequency

would be *. However, we are only able to measure $, modulo

2n radians. We have no direct means of determining the total

number of cycles through which the phase has turned as the

signal propagated from the source to each of the sites. If we

were to use a priori information about the magnitude of Tp to

resolve the number of cycles or ambiguities, the initial
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estimate of T would need to be sufficiently accurate that we

could predict t, to within much less than N radians. For

observations made at 8 GHz, this condition requires the error

in the a priori value of T to be much less than 0.06 nsec,p

equivalent to =2 cm. In general, this condition cannot be

met. Chapter 4 deals with some attempts to eliminate this

ambiguity.

To overcome the ambiguity problems with the phase delays,

the bandwidth synthesis technique was developed (Rogers,

1970). The foundation of this technique is that while the

total number of cycles at a given frequency may not be known,

the number of cycles between two relatively close frequencies

may be calculated, with uncertainty far less than half a

cycle, from a priori information. The delay is then found

from A /Aw. As Aw tends to 0, A /Aw approaches 8 /6w which is

the group delay.

Using the group delay, we could model the observed phase

with *W = WIg, but this expression is inadequate for two

reasons. If the radio waves have propagated through different

dispersive regions (e.g. the ionosphere) before arriving at

each site, then the phase delay and group delay will not be

equal (see Section 4.1) and the projection of the group delay

to zero frequency will not pass through the origin (Figure

A.l.a), a condition imposed by the above form of Even

without dispersive effects, the uncertainty in the number of

cycles and the value of the phase at each frequency will lead

to a similar problem (Figure A.l.b). To avoid these problems

4... .•-._" . ._- ,,. . . . . . .. . . ...... o. -. .. .. -. .-..-..-... .,.-. -..- - . . .:,



-272-

Figure A.1 Graphical representations of group delay and Visibility phase
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we model the observed phase using

W T g + $o

where 0 is a phase offset referred to zero frequency.

To more readily see the meaning of o in the above
0

expression, we can write an equivalent expression for the

observed phase: * = (m-%)'g + Ot' where *t is the phase

referred to frequency wo This phase is called the visibilty

phase. Ot is now related to the phase delay by woVp = Ot +

2nN, where N is the number of integer cycles of phase needed

to achieve equality.

The discussion so far has assumed that the differences in

phase between the corresponding spectral components of the

signal recorded at two sites are independent of time. In

reality, the two sites are located on a rotating earth and the

phase differences will change with time. To account for this

effect we introduce the phase delay rate ;p. The phase can

now be modeled as

O0 = (W-Wo) rg + 0t + p (t-tc) (A.3)

where t is the epoch of the observation (i.e. the time to
c

which 19g and t are referred) and t is the epoch of the phaseE

determination. In this case we can use the phase delay rate

directly, without resorting to a group delay rate, because we

are only interested in the change of phase with time and do

not need to know the total number of ambiguities at any time.

In summary, we started with the spectra of signals at

*

0,

Vll mlll mlmm
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*m each site which were related by

S(W) S Sl(w)e

and now we have a relationship between f and the VLBI obser-

vables (Equation A.3) for the case of the radio waves origin-

ating from a point source and propagating through a homogene-

ous non-dispersive region. In terms of the VLBI observables

the relationship between the spectra becomes

$2(M) = Sl(w)exp[-i(w-wo)rg - i - iw At] (A.4)

where At=ttc

We now investigate how to determine Tg, t and p from
9 t p

the signals recorded at each site, /Taisi(t) and /Ta2s2 (t).

The data recorded at each site consist not only of

TSl(t) and /s 2 (t) but also of additive noise due mostly

to the receivers. Returning to the frequency domain, we can

write the spectra of the data recorded at each of two sites as

( ) = ,' I(w) + W)

x c) 2 S(W) + fsR()222

where YINI(w) and sN 2(w) are the noise spectra at each

site, and TsI and Ts2 are the "off-source" system tempera-

tures. As with the antenna temperature, the system tempera-

ture is a convenient method of measuring the noise power. We

assume the components of the noise spectra have Gaussianly

distributed, independent real and imaginary components. The

components at each frequency are also assumed to be indepen-

dent. These assumptions can be justified by the same argu-

S' ' , " - - ° . " o . . . - - " . .. - . - . - • . " " " .. , ' "• - % ° .
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ments used for the spectra from the source.

Before progressing further it is convenient to change

notation to reduce the number of symbols used in subsequent

equations. We define

-(T 2 S2 (w)

where K = /Ta2 /TaI . The scaling K ensures that the components

of S(w) and S'(w) have the same variance, which is equal to

Tal/2. The noise spectra are similarly redefined

Ni "i ii()
/Ts2 R2(w)

Also for convenience we will define

a-- (W-W0 ) + *t + Wt Atg t p

Using the new symbols the expression for the spectra of the

recorded data at each site will be

X1 (w) = S(w) + N(w)
(A.5)

X2 (w) = KS'(w) + Nl(w)

and the relationship between spectra will be §' (w) =

S()e - ia. All of the spectra given in Equation (A.5) vary

with time. However, this time dependence does not mean that

we cannot determine estimates of the above spectra. Any

finite duration oL data can always be expanded in Fourier

series. In a later part of this appendix and in Appendix B we

will discuss the determination of these spectra. (We will see

later, that the spectra of the signals recorded at each site

never need be computed, only the cross spectrum of the signals

0

• . . .. . o .. . . ° .. .- . .
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is computed.)

We now wish to develop an estimation technique to deter-

mine T and t given the spectra XI(w) and X2(w) which we

can determine at a number of different frequencies and times.

For an observation of recorded bandwidth B and duration T, a

maximum of BT independent estimates of the components of X(w)

and X2 (w) can be calculated, assuming that the signals have

been sampled at the Nyquist rate 1/2B. If we observe for 100

seconds with a total recorded bandwidth of 16 MHz, then the

number of independent estimates of the components of the

spectra is 1.6x109 (a very large number).

There are many estimation techniques we could use to find

estimates of Tg, *t and ip. of these we will develop the

Maximum Likelihood (ML) estimate. This technique requires a

priori knowledge of the joint probablity density function

(PDF) of the observations (in our case X (M) and X2 ( )) which

are functions of the VLBI observables. The ML estimates of

g % and t which will be denoted by tg, t and tp, are

estimated by maximizing the conditional PDF P(XlX21rg, p

where 1g, Vt and tp are the values to be varied until the

conditional PDF is maximized. The values of ig, ft and ip

which maximize the conditional PDF are, as stated, the maximum

likelihood estimates ^gC t and f

At this stage the conditional PDF we need is not avail-

able. It will have to be derived. We commence with the PDF's

which we do know (or strictly, have assumed). From the

recorded data we have BT spectral components. For each of

S

- .,e* *
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these components the signal and noise values will be denoted

by §j, Rj and fj. (The index j implicitly implies that these

components are functions of both frequency and time; see

Section 2.2 and Appendix B for discussion.) Since we have

assumed Gaussian distributions for the real and imaginary

parts of the signal and noise components, the individual PDF's

will be

p(j 1 exp( - j 2 ( 2

p(lj) 2 n2 exp( -J lj/ 2(a nl ))

ni )

(2)= 1 -22

2 exp( -IN 2 / 2(an2
j 2 (n2) j

2 2 2

where (as) 2 (anlj and (a ) are the variances of each of

the real and the imaginary components of the respective

signals and noises.

Since all the signals and noises have independent compon-

ents we can form their joint PDF, p(SRi,R), which is given

by the product of their individual PDF's.

BT
1 j=1 (2%) 3 (a 2 2 2

j n) j n2 j
2 2 2 2 -2

exp[ -ISj 2/ 2 (asl- INljI 2/ 2 (On)j -IN 2 I/2(n 2 )
2

Remembering that the observed spectra are 1 and X 2 ' we can
substitute for N and R21 in the above PDF using R i -

and = 2- KSexp(-ia.) where aj is defined to be (W-wo)g +

i'. . .. o . . . . . . . . . . . . . . . . .- ° • - - . • ° . ° o
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it + W;Atj. Hence we obtain

BT
p(X1 ,X2

PS I lg t'? p H 3 2 2j=I (2% Cs) (a (nl) (a n 2j 1 (2:)s)J~(~i J (On2) j

2 IR PI 12 x -3 K2 e-ia 2

exp[ - 2- 2 (A.6)
2 (a s 2 (anl)j 2(an2)

The above expression is not directly usable because it still

depends on the spectrum I of the signal which can not be

directly observed (because of the presense of the noise). The

desired conditional PDF can be generated from Equation (A.6)

by integrating over all possible values of § to form a mar-

ginal PDF (see e.g. Drake, 1967, pp. 69-72, for a discussion

on generating marginal PDF's):

P(i'X 2 1 9g t'p ) = f P(XJ'X2 'b I g'it'; p d§

The details of carrying out this integration are given by

Whitney (1974, pp. 64-65). The result is

_ BT 2
p(X1,X 2 1 ;g,4t,!p) = n2

j=l (2%)2(os 2 2 2
n j nl) j n2 I

)2 2 2
+1 IT .1(A 7

where o = 2 °l 2(° n2))2)2( 2 + 2) 2 )
nn (n2j sJ nlJ

-2e n)+ 2) ,
) 2

nlj (On2)j

6:'''' ' .. ,.,.. " " . " • . . . . . " ,.. ' . . .'". .. ' . . "•"... .. . -'v "\ ;' .' , -". .
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and Rij is the complex conjugate of Xij' i=1,2.

Although Equation (A.7) looks very complicated (and not

very close to a usable form), its interpretation is quite

simple. Remembering that XIj and X2j are the observed quant-

ities, we can choose a set of trial values for jg, ;t and *p

which would determine the complex vector Yj (assuming all the

sigma's are known). We would then form the product over the

BT values to determine P(R 1,X21:fg v, tp) When this operation

is performed for many sets of trial values of Tg, T and t

the set giving the maximum value for P(XlX2Itg$t,i p) will be

the maximum likelihood estimates ;g, ;t and p.

We can save a great deal of time in computing the product
(A.7) by noting that jX1 jI /2() A and IX2jl /2(on2) j are not

affected by our choice of ig, 4t and 1p and hence will not

affect the maximization process. Also, by expanding Yj 2 we

obtain

. j2 X X0.+ KX2 jX2 j + 2AK Re{ e" (1nl)22 2 + 2 j2

(anl'j (n2) j (nl) j ("n2) j

in which again the first two terms are not affected by the

choice of -1g, t and To find the maximum likelihood

estimate it is thus sufficient to maximize

2 a2K
.BT .. K -d

2 exp[- 2 Re{ Xl e Re{j=l (as) j(an ) (a (a (a
j nl n2)] j (n1) j(n2)

This expression may be further simplified by taking the

natural log of the product, which yields a summation to be

4J

. . . . . . . . . . . . .. . . . . . . . . . .. .-. ".-.. . . . . . . . . .... -. . .
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maximized

BT 2 BT 2
E ln( 2 2) +  E 2 Re j2e- }

j=1 (ls) j(On l ) j(n2) J l nl) j n2) j2

The first summation will not affect the maximization and we

are left with maximizing

BT o Re( X X (A.8)

j 1 (anl) (n2) XljX 2 je }(

to find the maximum likelihood estimates of g, *t and ;p.

At this stage, it is normally assumed (Whitney, 1974)

that the sigmas given in Equation (A.8) are independent of j

and hence can be taken outside the summation reducing the

expression to be maximized to

BT -* -i
E Re{ X X e (A.9

j=1 ljX2j (A.9)

Equation (A.9) is very close to the formula used by the Mark

III correlator and processing software (FRNGE), to estimate

the VLBI observables g, *t and 'p. If we examine Equation

(A.9) more closely, we can derive the actual formula used by

the Mark III processing programs. Remembering that &j =

(Wj-)o)!g + it + Wj p tj, we see that Equation (A.9) may be

rewritten as

BT
Re{ e-t £ XljX2 jexp[-i(wj-wo

);g - i)j~pAtjl]}
j-i

where it has been taken outside the summation because it is

not a function of the cross spectral frequencies. Equation

..' ... . .. . . . . . . - . - . , . . . - . .. . •..-s- .. -. -. -. -. ". " -- -. . . . -. ,. .'. " . .- -. • -.
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(A.9) can be maximized by maximizing the magitude of

BT _,
E X ljX2j exp[ -i(wj-W ) i- iW.t At.] (A.10)

j=lljjjogp j

and rotating the value of Equation (A.10), evaluated at 1 and
* g

t p, by -;t such that it is then purely real (rotated back onto

the real axis). Equation (A.10) when divided by BT is called

the delay resolution function. Use of the delay resolution

function instead of Equation (A.9) leads to a considerable

saving in computation since it is only necessary to search

over two parameters, g and 1 , instead of the three para-

meters which would be needed if Equation (A.9) were used.

The maximization of Equation (A.8) represents the maximum

likelihood estimator of the VLBI observables when the noise

statistics are assumed to be Gaussian. Equation (A.10) which

is used by the Mark III processing software makes a further

assumption that the standard deviations of the Gaussian

statistics are independent of frequency and time. The

equivalence of the ML estimator and a least squares estimator

will be shown for Equation (A.8). The relationship between

the Mark III algorithms and the least squares estimator will

then be shown.

The input for the delay resolution function is the cross

spectral components lj!2j" The derivation of the delay

resolution function assumed that these cross spectral compon-

ents were available near the radio frequency (RF) for the

observation. As discussed in Section 2.1, the signals record-

ed at each site have been heterodyned from RF to video fre-

°I
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quencies so that the signals can be sampled. The required

- input for the delay resolution function can be easily gener-

ated from the video signals because the heterodyning only

translated the spectrum in frequency. (There were local

* oscillator phases added to the phases of the spectra from each

site, but these local oscillator phases are calibrated by the

phase calibration system; see Section 2.3.) In the discussion

that follows we will compute the cross spectrum from data

recorded at video frequencies. The frequencies of the cross

spectrum will have the local oscillator frequencies added to

them to produce the correct cross spectral frequency.

Before proceeding further, it is wise to look at some of

the practical aspects of performing the summation in either

Equation (A.8) or (A.10). In most Mark III geodetic experi-

ments the recorded bandwidth is typically 16 MHz (consisting

* of eight, 2 MHz channels) and the observation of a single

source is usually of 100 seconds duration. For these values,

* 3.2x109 equi-spaced data samples are recorded at each site

9
participating in the observation. From 3.2x10 real data

9
- samples, l.6x10 complex components of the cross spectrum can

be calculated. The frequencies at which these components are

evaluated are however not arbitrary. The frequency spacing

will be the inverse of the duration of the observation. The

highest frequency component which can be estimated will be the

inverse of twice the sampling interval. in addition, since

the observations are recorded at a number of widely separated

frequencies the cross spectrum can only be computed at fre-

41

e %
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quencies within the bandwidths which have been sampled.

Therefore within each 2 MHz band which has been recorded we

8
can compute 2x10 complex components of the cross spectrum.

We restrict the following discussion to a single such band.

A cross spectrum computed directly from the recorded data

may not be very meaningful because of the rotation of the

earth. For each frequency the phase of the cross spectrum

will be a function of the difference in arrival times of the

signals from the radio source. As the earth rotates this

phase will change. If the difference in arrival times of the

signals were changing at a constant rate then the phases of

each frequency component would be changing at a constant rate

which would be equivalent to a change in the frequency of each

component in the cross spectrum. Even this situation does not

apply to geodetic VLBI because the acceleration of the differ-

ence in arrival times is not negligible. For a trans-conti-

nental baseline this acceleration term could change the fre-

quencies in the cross spectrum by up to 1 Hz/sec (w0 =8 GHz).

The resolution in frequency for a 100 sec observation would be

0.01 Hz and the change in frequency introduced by the accel-

eration would be a severe problem. In order to solve this

problem we compute the cross spectrum using shorter intervals

of time. Hence we subdivide the 100 sec observation into seg-

ments. From each segment of data we can obtain estimates of

the components of the cross spectrum and then add the cross

spectral estimates together accounting for both the Doppler

shift and the change in Doppler shift for each segment of
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data. Since the duration has been shortened the frequency

spacing of the cross spectral components which can be computed

will be coarser than if we had used the full 100 sec. This is

not a severe problem because the power spectra of the signals

and noise are almost constant over the 2 MHz recorded band-

width (see Section 2.1) and the expectation of the estimates

of the components of the power spectra will not change rapidly

between adjacent frequencies (the estimates themselves could

change rapidly, however).

For a typical geodetic observation what should be the

duration of the segments? A cursory consideration may imply

that the segment length could be almost one second. If a one

second segment of data were used to compute estimates of the

cross spectral components the change in frequency of a cross

spectral component would be 1 Hz during the interval of time

used to compute the cross spectrum, and the frequency

resolution would also be 1 Hz, i.e. there would be a

"smearing" of the cross spectrum comparable to the frequency

resolution. Unfortunately this duration for the segment is

far too long. To see why this is so, we need to consider the

methods used to compute the cross spectral components.

Two different methods could be used, either the Fourier

transform of the cross correlation function of the data from

two sites, or the product of the Fourier transforms of the two

individual data sets. If we try cross correlating the data

from two sites, a problem develops immediately because the

delay between the signals is changing with time, and hence, as

6" % - . ' i " o ° ," . " , . • " . o ° . " " - " o " % o ' ~ . o " - " o " . " • •% . " . ' o '° ° o ,
. . • .- . . - . • . - ., • - . . • °. . , . • . ° . .. ° *** ° .A ,o °.°..
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we cross correlate the data, the peak in the cross correlation

will move and "smear" the peak out. The peak in the cross

correlation function will translate at the group delay rate

which can be as high as 2 psec/sec. If we try to cross cor-

relate data for too long an interval, the data will decor-

relate because of this changing delay. The computation of the

Fourier transform of the data from each site does not, at

first, seem to suffer from this problem because the changing

delay will only shift the frequency of the spectrum. With

this approach the problem arises when the product of the

spectra from two sites is computed. Although the spectra are

computed at the same frequency, the frequencies of the spectra

are Doppler shifted with respect to each other. This shift in

frequency causes problems because the phase of the spectral

components from each station vary randomly with frequency.

(Even if we assume no noise, the random variation in phase

occurs because the signals from the radio source are them-

selves random quantities. It is only the phase of the cross

spectrum which varies smoothly with frequency.) This random

variation of phase with frequency requires that the proper

frequencies of each spectrum must be carefully matched when

the product of the spectra is formed to ensure that the

'4 correct cross spectral phase is computed.

To choose an appropriate duration for a segment of data,

we need to consider how the actual cross spectrum changes

during the interval which is used to compute the estimates of

its components. The shorter the duration used the fewer the
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number of frequency components we will be able to determine,

but the better the match between the expectation of the

computed cross spectrum for that epoch and the actual cross

spectrum. Since the phase of the signal part of the cross

spectrum changes smoothly with frequency and since its ampli-

tude is constant we do not require very fine frequency resolu-

tion.

We will use 4 psec (16 data samples) as the duration of a

segment. This choice is based on the rapid decay of the cross

correlation function (see Appendix B). The use of the short

mdata segments is not the technique used in the Mark III cor-

relator, but this concept of short segments will provide a

convenient method for developing and studying the actual

methods used by the correlator to estimate the cross spectral

components. In Appendix B we will investigate, in detail, the

method used by the correlator and the approximations made in

developing the method. The 4 psec segment allows eight

complex components of the cross spectrum to be computed.

These components are spaced at 0.25 MHz intervals over the 2

MHz bandwidth. The cross spectral components computed from

all of the data segments then form the input for the delay

resolution function. (For the sign convention adopted in

deriving the delay resolution function, R2 would be the

complex conjugate of the cross spectrum computed from the

Fourier transform of the cross correlation function defined by

x(t)x2 (t+ )dt, where xl(t) and x2 (t) are the data from each

site. X X2 can be generated from the Fourier transform of

.-. "
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fx l (t)x 2 (t- )dt)

For a given frequency we can consider the behavior of the

cross-spectral phase with time. During the 4 psec between the

midpoints of successive intervals used for cross spectral

determinations, the phase of the signal part will change by a

maximum of 230 due to the rotation of the earth (corresponding

to a phase delay rate of 2x10 6 sec/sec and an observing

frequency of 8 GHz). In the current formulation, for each set

of search parameters, we sum over all BT components of the

cross spectrum. By improving the estimate of the phase delay

rate, how much do we expect to improve the estimate of the

phase change over 4 Lsec? The a priori phase delay rate is

normally known to better than 10 sec/sec and hence the

improvement in the estimate of the phase change over 4 4sec

0
would be less than 0.0001. This small improvement in the

value of the phase change would imply that we need only

compute the change once (from a priori information) rather

than for each set of search values. Actually the improvement

is so small we could sum together several thousand estimates

of the cross spectrum using just a priori information without

* introducing a significant amount of "phase smearing." This

approach leads to major saving in computation time. We are,

* in effect, removing the Doppler shift between the spectra of

the data from each site. The interval of time over which the

cross spectral components from segments of data are summed

together using only apriori information is called an accumu-

lation period.

z"
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This presummation approach is used in VLBI data process-

ing but it is not implemented as I have described (i.e. by

summing cross spectral components). There are two methods of

computing a cross spectrum, either by finding the spectrum of

each data stream and multiplying the spectra together or by

cross correlating the data streams and determining the

spectrum of the cross correlation function. The Mark III

correlator uses the second approach. The presummation is

implemented by summing together the complex cross correlation

functions and then finding the spectrum of the summed cross

correlation function (see Appendix B for details). The

results obtained from these two techniques are not exactly

equal. Their differences will be discussed in Appendix B.

The Mark III correlator computes the complex cross cor-

relation coefficents for a set of eight lags. The cross

correlation coefficients from each accumulation period are

Fourier transformed and the maximum likelihood estimates of

the VLBI observables are determined by a program called FRNGE.

The presummation may be included in Equation (A.8) by

writing the equation as

max QJ -a -i3q
max Re{Zqe q) (A.11)

q=l

weea n(q) K * -i(aa)
2a ______ ap J

" where a__XJ
q jul 2 2 j2je

•(nl) j n2 j

n(q) is the number of estimates of the cross spectral compo-

nents at each frequency in the q th accumulation period of

data, Q is the number of accumulation periods in the observa-

'... 1e
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tion, J is the number of frequencies at which the cross

spectrum has been computed and (aap) is the a priori value of

(W j-o0)r + *t + WjIpAtj, The multiplication of the cross

spectrum by exp(-i(a ap)) is called counter rotation. The

aq s now represent corrections to the a priori values of Tg,

and *9 . The summation over j is restricted to cross

spectral components at one frequency. (In Equation (A.11) we

are using one summation index () to represent summations over

both frequency and time. The single summation index has been

chosen to simplify the equations.)

We have now developed all the formulas necessary to show

equivalence of the ML and least squares estimators. The ML

estimator is represented by Equation (A.11). We may rewrite

this equation as

E Ref r ei (qrq)
q=-

where rq and 4, are the magnitude and argument of Zq From
qq

each accumulation period we will obtain one estimate of this

magnitude and argument at each frequency in the cross spectrum

which has been evaluated. Taking the real component of the

above expression we obtain

r rq cos(q - i ) (A.12)

q=1 q q

for the expression to be maximized. When Equation (A.12) is

near its maximum value 3 will approximately equal 4, and weq q

" " ' " - -"- " '" "- * " -" ' % .'- -'- :'"- -" " ; % "" " '-' " - " "-' " " " " " "" -" "-" "'
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may expand (A.12) in series which yields

2
E r q(1- (q- )/2 + higher order terms)

q-q

Clearly the above expression may be maximized by minimizing

r (,- a )

q q (4q q

But this minimization is simply the weighted least squares

condition with the rq's being interpreted as weights.

We would expect the r 's to be inversely proportional toq

the variances of the phases of the cross spectrum 4 . To
q

investigate this expectation we return to the form of -a_
q

From Equation (A.11) we have

n(q) 2 K -i(a ap) j

22a E X A -e pj(A.13)
q j-I( l 2 2 13x23

nlj n2) j

We will investigate this equation in two parts, firstly the

variance term and secondly the cross spectral term.

The variance term is K/((nl)  h2ernl (cOn2) j hr

2 2
S()(n1 n2 K 2 2

(a )(a ).+ (a ) (a ).+ K(ar ).(a )
nl j n2) s n2)j ) (nl)

and (s 2 a 2 and (an)? are the variances of the real or

imaginary components of the spectra of the signal at the first

site and the noise at each site. The constant K accounts for

the difference in the amplitude of the signal at the output of

the receiver between the first and the second site. These

variances are given by ( - Ta /2, ( 2 Ts/2 andva e 1n1
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p.

2(an2 2 =Ts2 /2. K is equal to /Ta2/Tal-

For nearly all VLBI observations, of nearly all extra-

galactic radio sources, the antenna temperatures are much less

than the system temperatures. Most radio telescope, source

combinations have Ta's < 1 K, whereas currently available

wideband receivers have system temperatures between 100 K and

200 K. Even with modern cooled wideband receivers it is

doubtful that system temperatures will drop much below 20 K.

Assuming that Ta<<Ts the expression for ao reduces to

2 2
= (os) j  Ta1/2

Incorporating the other variance terms we obtain

CojK 2/TalTa2
(nl) 22 2 TslTs (A.14)

(a (n) TsTs

The above term is considered independent of both j and q in

the algorithms used by FRNGE.

To evaluate the remaining part of rq it is convenient to

make one further assumption. We assume that variance terms

given above are constant over the duration of an accumulation

period, i.e. for a period typically less than 2 seconds. We

may then write

I2 , n(q) _ -i(a )
q = i .IjXje ap j (A.15)

2 2 j=l
nllq n2)q

We will define the coherently averaged cross spectrum, La, as

n(q) , i(aa ) j

C L e j- 2 (A.16)

d q j~l X1 j!2 ie a
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We should note that q is the conjugate of the summation in

Equation (A.15); see discussion after Equation (A.10).

From Equation (A.5) we have

- i(j-(*)j) + e-i(ap)+

ljX2j =KSSe aP j + SN2e
_,_ ii j.) -_,-i(a)

KS Ne (a-(a ap) + eI ap
1 1 2

(A.17)

The magnitudes of these terms are, respectively, IK*I -
Ta1Ta2, ISN; - /TalTs2 ', IKS Nil = Ta2Ts1  and INN2l=

TSTS2  . If ;p then as we sum the n(q) values in the

accumulation period, the signal term K§3*expi(aj-(aap) j)]

will have constant phase and the net signal magnitude will be

n(q)v'Ta 1Ta2 . The noise terms on the other hand will have

random phases for each value in the summation and the contrib-

ution of the noise components will increase only as the /n(q).

The relationship between the terms in the coherently averaged

cross spectra is represented graphically in Figure A.2. The

variance of the amplitude of the noise terms will be Rayleigh

distributed (Whitney, 1974, Section 3.2). When the real and

imaginary components of the noise terms have equal variance

2 2
(a2), the variance of their amplitude will be (2-%/2)a

From this figure we can also estimate the uncertainty in

the phase of the cross spectrum. Since Ta<<Ts, the dominant

noise term will be due to the product of the system noise

terms for the various sites. Further, assuming that n(q) is

sufficiently large that >> 17ss 2/n(q), we may
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Figure A.2 Representation of the components of the cross spectrum

Za n(q) -i nap.

q E X 1.X2 je
q J=1

=the coherently averaged

IM crass spectrum

w/(n(q)/2)(Ta 2Ts 1+Ta 1Ts 2+Ts 1 Ts 2 )(2-7r/2)

vf* (q)_ Ta 1 e

n4) a jT21
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project the noise term in a direction normal to the signal

term; it will have a variance of n(q)(Ta2Tsi+TaTs2+TsTs2 )/2.

The variance of the phase will be

2 Ts1T (A.18)

2 n(q) Ta1Ta2

(Note: n(q) can nearly always be made sufficently large to

satisfy this last assumption because we can always repeat the

correlation process with an updated phase delay rate if the

initial phase delay rate is not sufficiently accurate to allow

n(q) to be selected large enough.)

Also from Figure (A.2) we see that

n(q) -i(a j
j j.1 R j 2j e ap 3 n(q) vTa 1Ta 2

Combining the above result with Equation (A.14) we have that

MT Tarq 1 2 n(q) (A.19)

Ts1 Ts 2

which by comparing with Equation (A.18) is seen to be inverse-

ly proportional to the variance of the phase of the cross

spectrum, as expected. This completes the proof of equival-

ence of the maximum likelihood estimator and weighted least

squares.

The above result was not unexpected since it can be

proved generally for linear estimation problems with Gaussian

statistics that the maximum likelihood and least squares

*estimators are equivalent. It should be noted that the equiv-

alence is valid only when the linearization in Equation (A.12)

o0

° : .", ,-',/ .,, . .,.. ...' ".a.. , , " '" T. . .* . . , . , .,.* , -,* , ". . * . ,- - .o . ..a- * -
° t - o , - Q ' " , . . *° q -" "d' . '° e ''' ,° ° ' - " m. e" " -

o
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is valid. (In Section 3.1 we saw that the phase differences

between the model and the observed cross spectral phases are

sufficently small for the linearization of Equation (A.12) to

be valid.)

The FRNGE algorithms and least squares are equivalent

when the system and antenna temperatures are independent of

frequency and time. Now that we know where the FRNGE algor-

ithms are deficient we can use the least squares approach to

correct the results from FRNGE if there is evidence that the

system and antenna temperatures are not independent of fre-

quency and time.

The least squares approach also provides an excellent

method of visualizing how the VLBI observables are estimated.

The quantity to be minimized is the weighted sum of the

squares of (0 - 1) where the 4, Is are the observed phases of
q q q

the cross spectrum and & is simply a mathematical model of
q

the dependence of these phases on the group delay, visibility

phase and phase delay rate (Equation (A.3)). The VLBI

measurements are made by least squares fitting of straight

lines to the observed phases as a function of frequency and

time. The slope of the phase versus frequency at a given

epoch is the group delay referred to that epcoh; the slope of

the phase versus time multiplied by frequency is the phase

delay rate, and the intercept of these lines at a given epoch

and frequency is the visibility phase. The visibility phase

divided by the frequency to which it is referred (wo) is the

(ambiguous) phase delay.

J. 4
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Finally, before leaving this appendix we ask why FRNGE

uses a maximization approach rather than the least squares

PP estimator. Figure (A.3) shows the sum of the squares of the

residuals ('I' -2 when T is varied and 4and tare esti-q q g p
mated to produce the mininum sum of the squares of the residu-

al phases, i.e. we carried out a series of least square fits

to "hypothetical" cross spectral phases but with the group

delay constrained to a series of values between -20 and 20

nsec. (See Appendix E for a discussion on "constrained" least

squares.) To produce this figure we assumed that the suc-

cession of four frequencies in the synthesized band were

separated by 100, 250, and 300 MHz. (A review of the

equations for the model used to fit the group delay to the

cross spectral phases, Equation (A.3), will show that the sum

of the squares of the phase residuals does not depend on the

absolute frequency of each channel when 4is estimated asT

is varied.) It is clear that there are a number of local

minima, to any one of which the least squares may converge

(remember, we are dealing with a nonlinear problem and hence

we would need to iterate the least squares solution). So even

with the least squares approach it would still be necessary to

search over many trial values to ensure that the global mini-

-' mum was found. However, once the region of the correct

minimum is located the least squares estimator is an excellent

way to estimate the values of the VLBI observables.

We should note in Figure A.3 that after the group delay

has been changed by 20 nsec, the sum of the squares of the
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residual cross spectral phases is zero. This perfect fit of

the model (Equation (A.3)) to the observations ocurrs because,

for the the sequence of frequencies used to produce Figure

A.3, a change of 20 nsec in the group delay will change the

model phases at each frequency by exact multiples of 2n

* radians. The spacing between the group delay values which

fulfill this relationship is called the group delay ambiguity.

Its value is given by the inverse of the largest common

denominator of the frequency spacings. It may appear that the

group delay ambiguities could be resolved because the fits of

the group delay to the cross spectral phases, within each 2

MHz bandwidth channel, will be affected by changes in the

group delay by multiples of 20 nsec. This is not the case,

however, because in the implementation of the maximization of

the delay resolution function, two distinct group de'lays are

estimated: the multiband group delay and the singleband group

delay. The multiband group delay is estimated from the change

in cross spectral phase between the (widely spaced) channels.

* The singleband group delay is estimated from the change in

4 phase within the 2 MHz channels. We discuss these two delay

measures in detail in Section 2.2 and Appendix B.3 (Equation

B.3.3), (see also Whitney, 1974, pp 156-158).

.. . ... ..i''.- ." ." "-" - "" .,- - .". - .. .- " " .".. "'" - ".".. ..-- -" ." ,". ,'-.- "
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Appendix B. Evaluation of the delay resolution function

- In Appendix A we developed the maximum likelihood esti-

mator for VLBI observables. We assumed that the cross

spectrum of the signals received at each site was available in

the radio frequency (RF) band, i.e. at frequencies around 8

GHz for X-band and 2 GHz for S-band. However, in Chapter 2 we

saw that the signals were recorded at each site after the RF

signals had been mixed with a local oscillator (LO) signal

such that the spectra of the recorded signals were shifted in

frequency by the LO frequency. In this appendix we

investigate the relationship between the spectra of the

recorded ("video") signals, and the spectra of the signals

before they were heterodyned (Section B.1). We will then

investigate the cross correlation function of the video

signals and compare this cross correlation function with the

cross correlation function which would be obtained if the

signals at RF were recorded (Section B.2). Once we have

investigated the cross correlation functions, we will derive

the algorithms used by the program "FRNGE" to estimate the

cross spectral components of the recorded data and to obtain

the maximum likelihood estimates of the group delay, phase

delay rate and visibility phase (Section B.3). Finally we

will investigate the effects of the approximations made in the

correlator algorithms on the group delay, phase delay and

phase delay rate estimates (Section B.4).

Firstly, to avoid any confusion concerning sign conven-

| °°*
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tions and definitions of cross correlation functions and cross

spectra, we describe these quantities in Table B.1. An impor-

tant point to note is that the delay resolution function

"p. requires the complex conjugate of the cross spectrum (see

discussion concerning Equation (A.1O)), which may be obtained

by correlating with the sign of the lag (1) opposite to that

shown in Table B.1 (we will discuss this topic further in

Section B.2). We have continued to use the complex conjugate

-: for consistency with earlier works (Rogers, 1971; Whitney,

" 1974; Whitney et al., 1976). (Part of the confusion about

FL conjugates can also be attributed to the cross spectrum C21 (w)

- being the complex conjugate of the cross spectrum defined in

Table B.1, i.e. C12 (M)=C21(w), for real signals.)

B.1 Relationship between the video and RF cross spectra

In Chapter 2 we saw that the spectrum of the upper side-

band (USB) video signals were related to the spectrum of the

RF signals by (see Equation (2.1.1)),

-uu

(-. SI()v) = S(W + w) e 1 for wv > 0
'.'-and

and.S I (wv) =1 (WvW-l) e 1  for < 0,

where §l(w v ) is the spectrum of the video signals or simply

video spectrum, B1 (wv±wi) is the spectrum of the RF signal, wI

is the sum of the frequencies of the first and second local

oscillators, and 1 is the sum of the phases of the local

oscillators for the upper sideband. For the lower sideband

~~~~~~~~~~~~~~~~~~~.....- . ....... .. ........ .. ,. .... .... .-.. %. . -.. .... ...... -.......... ,... -. ." ". '.
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Table B.1 Definitions of the sign conventions for delay,

cross correlation function and cross sprectrum.

Delay rg t - tt

where t1 and t2 are the travel times

from the source to each station

(In this table Tg will be assumed

constant and equal to the phase delay T B

t

The relationship between signals recorded at

each site is (neglecting noise)
sl1(t) = s2(t+,rg )

or
s2 (t) = sI(t-g) •

The spectra of the signals will be

(W)  sl(t)e - i ttdt

and

2()= f s2 (t)e dt

From the definition of T , these spectra will be related by

S2( W) = SI(w) e -tg

The cross correlation function RI 2 ( ) is

R 2 ('t) f sl(t-t)s 2 (t)dt = f s(t)s 2 (t+'t)dt

The cross spectrum, C12 (w), of the signals from each site is

C1 2 (w) = f R1 2 1r) e

From the definition of the cross spectrum we have

C12(M) = 9*()9(w) = 9 (W)9l(w)e- wg -= C12 121 (w)

The delay resolution function requires, as input, the complex

conjugate of C1 2 (w), as defined in this table (see text).

4-' '''''- ''.- . -£ ' ,-','-'' :.. '-'.;' ''.".,-< .;.Z.> ",.".', - .....," - ..- -:"L. . .
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(LSB) video signals, the relationship between the video

spectrum and the RF spectrum is (see Equation (2.1.2)),

e7 1  for w> 0

and

i,.1
S(Wv 1 , for wv < 0,

where Sl(Wv) is the LSB video spectrum and *I the sum of the
lv1

phases of the local oscillators for the lower sideband. The

same local oscillator is used to heterodyne both upper and

lower sidebands from IF to video, but since the USB and LSB

signals propagate through different circuits in the single

sideband mixer (see Section 2.1), they could have different

phase shifts added to them. Hence we use the two different

uphases * and *1. The specifications for the video converters

*indicate that the difference in phase of the upper and lower

0
. sidebands should be less than 5 (Mark III System Documenta-

* tion, 1980, p. VC-8).

At the second site of the interferometer similar rela-

. tionships exist between the video spectra and the RF spectrum:

$2 (() S 2 (W+W 2) e 2 , for wv > 0, (B.l.l.a)

u
su(W) = (Wv-2 e- i2 , for v < 0, (B.l.l.b)
2 v ~2 wv2 v

and
2-( = 2(cv- 2) e 2 , for w > 0, (B.l.l.c)

(Wv) g 2(W +W 2 e 2 , for w < 0. (B.l.l.d)

2 v 2 v 2 v

We now develop the relationship between the video spectra

of the data from each site. In Appendix A we derived the

09ZI
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relationship between the spectra for signals at RF. From

Equation (A.4) we have

S2 ) = (w) exp[-i(w-Wo) g- i*t - iwpAt]

where wo is the frequency to which the visibility phase, #t,

is referred, and At is the time difference between the epoch

of the observation (i.e., the time to which T and 16 are

referred) and the time of the determination of the cross

spectral components. (Note that the components of the cross

spectrum at a specific time can be determined from a 4 psec

segment of data.) If we take w equal to wv+W 1 in Equation

(A.4), we obtain

S2 (Wv+Wl) = Sl(Wv+Wl)expf-i[(wv+wl-O) g+ t +(Wv+Wl) pAt])

But
~l(Wv Wl) = u (mv )for-i 0
(Wv+ S e 1i , for USB and wv> 0

and

( (v+Wl) = S (Wv) e- 1 , for LSB and wv< 0.

Hence

S2 (W +Wi) §U (Wv)exp{_i[(wv+Wl-) rg + (wv +wl )ipAt

+€I 1) for USB, uv> 0

and

S2 (W v+W ) S (v )exp(-if(w v+w l-Wo ) t+ + (Wv +U)pAt

+ 1 for LSB, wv< 0.

On the left hand side of the equations we still have the

RF spectra of the signals from the second site. To relate

these RF spectra to the video spectra we again need to trans-

late the spectra by the local oscillator frequencies. Hence

I
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the spectra of the signals at site 2 at video frequencies

become

U + W(v+ W- W e for USB, wv> 0

and

2 v+ W S 2 (Wv+ Wul  "2 1 , for LSB, w < 0.

Therefore the relationship between the video spectra of

the recorded data at each site becomes

2 uv -2) + 9 () exp{-i[(w +w - ) C+ 

2 U(W2 1 viog0 t
u u

+ (Wv+W1)1p at + (41-42)]) , for USB, w v> 0

and

(W+w-w) = V() exp{-i -w +w -o)T+ *+2 v 2 l v vl-og9 t

+ (Wv+Wl) pAt + ($1-, for LSB, w < 0

In the equations given above the video spectra from each

site are referred to different frequencies (wv for site 1 and

Wv +Wl- 2 for site 2). However, w1 and w2 are usually quite

closely matched since they are derived from hydrogen maser

frequency standards. (Even if these frequencies are not

closely matched, it is unlikely that they will be greater than

the frequency offset due to the phase delay rate; see comments

below.) For the data we will be analysing the maximum

frequency offset between the hydrogen masers will be 0.1 Hz at

X-band (for the Effelsberg hydrogen maser during the July,

* 1980 experiment) . More typical values for frequency differ-

ences are 0.01 Hz (again at X-band). These frequency differ-

ences are very small compared to the frequency spacings to be

. = " f-- - -. . ..-- - - - - - = . f . • • , = . -:* .' %" *. * c . : * • . - . . o . . . - . ' '
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considered in the cross spectrum (0.25 MHz) and the frequency

offset due to the rotation of the Earth (this latter offset is

implicitly contained in the phase delay rate term, and may be

as high as 16.8 kHz at X-band). We can change the frequency

offset of the video signals at the second site by introducing

a time varying phase term similar to the phase delay rate

term.

To see how this term may be introduced, we consider the

calculation of the video cross spectrum. The video spectrum

at the second site is computed from a finite duration of data

(AT) by

§u t W M e sv2) St e(v(wl-l-2 )t dt
AT

If (w1-w2 )AT << 1 (AT must be selected to fullfil this condi-

tion), then the (wl- 2 )t term may be treated as a constant

during the integration which would yield
-u i( W t.

Substituting this equation into the relationship between the

video spectra we obtain

S2(Wv) "(W exp{-i[(wv+Wl- o)'T + *t + (W +W At

$_u  u F v+ (* -*$) - (w -w2 )t]), for USB, w > 0

(B.l.2.a)
and

§1 (W) 91S exp(-i[(w +Wl-Wo)g + + (W +W )ipAt

+ (1-2) -(wl-2it], for LSB, wy< 0

(B.I.2.b)

I
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The expressions for the relationship between the video

spectra for USB with wv < 0 and for LSB with wv > 0 may be

generated from Equation (A.4) by substituting w - wv-W0

Using the same procedures which led to Equations (B.1.2) we

obtain

2(wv) Sl(v exp(-i[wv-wl+wo),g - #t + (Wv-Wl);pAt

4 + (W-w 2 )t]), for USB, w v < 0

(B.l.3.a)
and

( (Wv) expf-i[wv-wl+Wo)g - + (Wv-W )t pAt

- + (wl-w 2)t) for LSB, wv> 0

(B.l.3.b)

If we group all the local oscillator terms together by

defining

A~u M(u 
uA~u~t) - 1 2 ) + (wl-w21t

andU, A I
.1A M41 t 42"V + (wl-w 2 )t

then Equations (B.1.2) and (B.1.3) become

S(Wv) g 1W( ) exp{-i[wv±wl:;Wo)g T ot + (Wv±Wl)pAt

_ Au(tf)} , for USB, (B.l.4.a)

and

St(wv) '(wv) exp{-i[wv:l±wo)g ± $t + (wvWl) 1 At

± Asu(t)]) , for LSB, (B.l.4.b)

where upper signs refer to wv > 0 and lower signs to wv < 0.

- . . . . . . . . ... - .- . . ,- . -' '. . . , -. .- . -, -. -. . .'.*A. . , . U '-- %-- *..* F-u'' a
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From Equations (B.1.4) we see that the phase changes due to

the phase delay rate and the oscillator frequency difference

terms have opposite sign for the upper and lower sidebands

(remember wI > >  v and wI is always positive). We will see

later in this appendix that this sign reversal causes some of

the errors introduced by these time varying phase terms, to

cancel when upper and lower side band data are combined.

The video cross spectrum will be, for upper sideband

Su(W)Su (Wv = I](WV)I exp{+i[(w iTWo)-
1 v 2 'v 1v' v~~ 1 0~ ±

+ (Wv±Wl)Ipt ± Au (t1) (B.l.5.a)

and for lower side band

S1 (wv)S 2 *(wV) = I(WjwV)I exp{+i[Vw Tl+wO) g *t "

+ (v W )iAt TO (1t)) . (B.l.5.b)

If we compare these expressions, with those for the cross

spectrum of the signals at RF, we see that the video and RF

cross spectra are related by

SI(v)Su (W) = I(W v_)S2(Wv±W2) exp[+iAu (t)J, for USB

1 v S 2  v 1v12 2
(B.l.6.a)

and

(wv) § (Wv;l)§2(Wv* 2) exp[iA* i(t)], for LSB.
1v2 v 1= S(ch 1 )S2 (vW 2 )

(B.l.6.b)

Hence, whenever the delay resolution function requires

the cross spectrum at RF, we can substitute the video cross

spectrum. However, when the video cross spectrum is used

there is an additional time varying term introduced because of
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the difference in oscillator frequencies. We should note that

the delay resolution function only requires the positive

frequency components from the cross spectrum (because only the

independent cross spectral components were used to derive the

delay resolution function; see Appendix A), and hence the

cross spectrum will only need to be computed at positive video

frequencies for USB and negative video frequencies for LSB.

Before developing the correlator algorithms it will be

instructive to compute the cross correlation function of

signals (without noise) recorded at video frequencies. We may

find the cross correlation function by taking the Fourier

transform of the cross spectrum of the signals. The cross
v

correlation function R12 (c) will be

R2v ( = B (WV)R(Wv) e i v dv v ,
1 2B - 2

where $§(v( and $2(w v ) are used to denote either the upper

or the lower sideband video spectrum. The complex conjugates

of Equations (B.1.5.a and b) allow us to express the integral
u

above in terms of the power spectra I§(Wv)l and (Wv01.

For upper sideband data we have
2nB

Ru = f U(Nv2)I exp(-i[(wv+w ,o g+ t (Wv+Wl)p At

0
1 + A~u (t)]) eiC~v dwc

0 -2
+ f I$1 v )I exp{-i[(wv- W+Wo - t+ (Wv-Wl p a t

2,x vv g10 t v1 p

- lu (t)]) eiW v dw
V

where we have split the integration into separate integrals

-. *-
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for positive and negative frequencies because the expressions

for the cross spectra are different in these regions. In

Chapter 2 we saw that the power spectrum of the signals should

be constant over a 2 MHz bandwidth. If we assume this is the

case, then we can integrate the expression for R12 (T). After

some algebra we obtain

= cos{(Wl-wo)Tg + (l pAt + *t+ A.u(t) + nB( g+ipAt -.T)}

sin{nB(T + % At - )}/[%B(T + t At - ]. (B.1.7)
g p g p

In examining this cross correlation function we note that

the time lag T is only multiplied by the bandwidth B whereas

(Table B.1) is multiplied by both the bandwidth and the RF
g

frequency. (Note that +t has an implicit dependence on fre-

quency because it represents the phase of the cross spectrum

at the reference frequency wo' i.e. ft = wop Consequently

as the lag x between the tapes is changed the arguments in

Equation (B.l.7) will change slowly, whereas if either the

group or phase delay changes these arguments will change

rapidly.

It is instructive to compare Equation (B.1.7) with two

other cross correlation functions. If the signals at RF had

been recorded (at a sampling rate of %/wi samples/sec), the

cross correlation function would be

RI (C) = cosf(w W + f At + -Ti' + %B(T + I At - )}
12 1 o)' 1 Wp t 1 g p

sin{nB(Tg+ tpAt - ')}/[%B(vg+ tpAt - -C)]

While this expression looks very similar to Equation (B.1.7)

o ° - -U. [" .. - .-.....-. " [i .. L . -- . < < --- '. - - i ' ii iI - L i" i " ' " -i..- [" - [ ' . " i '
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there is a major difference. The cross correlation function

of signals recorded at RF is a function of w1 and hence

changes very rapidly as the lag between the tapes is changed.

At the other extreme, if the signals from the radio

source in the frequency range 0-2 MHz were recorded, their

b
cross correlation function, R1 2 (), would be

bR12(") = cos{%B(r + Ip At -

sin{%B(? + I At - v)}/[fB( + 'pAt - r)]
g p g p

In this case there are no rapid variations in the cross cor-

relation function for variations in either T or Tg.

The cross correlation functions given above are shown

graphically in Figure B.1.l. This figure highlights the

advantages of the heterodyned observations. We gain the

sensitivity of the RF recording to Tg and retain the advan-

tages of slow sampling rate and slow variation of cross cor-

relation function of 0-2 MHz recordings. [The loss of cor-

relation in the heterodyned case is due to the difference in

the oscillator phases, which appears in the cosine term in

Equation (B.1.7). The oscillator phases add directly to the

cross spectral phases at all frequencies in the video band-

width, i.e. unlike a delay, their phase (in the video

spectrum) does not depend on a delay-like quantity. Conse-

quently these phases will change the shape of the video

" signals at each site (if the oscillator phases are different),

hence decorrelating the signals. This loss does not occur if

-- the delay resolution function is used (see Rogers, 1970, and

-°0
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Figure B.1.1 Cross correlation functions for three types of recording

a. Heterodyned signals

modulus{(w-w )T + W T ,2r}

ST/4

-1.0 -.75 -.5' -.25 0. .25 .50 .7 0

b. Signals recorded at RF
(2MHz bandwidth)

c. Signals recorded at DC
(2MHz bandwidth)

-0-75 -. 5 .25 0. .25 .50 .7 1.00
T6T(pe)
g
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Section B.4).]

An examination of the cross correlation function shown in

Figure B.1.l indicates that the magnitude of the cross correl-

ation function decays rapidly as v + A t-T deviates from zero.
g p

This rapid decay allows the cross spectrum to be computed from

the cross correlation function estimated at a small number of

lags about the a priori estimate of the delay. The Mark III

correlator evaluates the cross correlation function at eight

lags centered on the bit offset closest to the a priori estim-

ate of the delay. The lags are spaced at the sampling inter-

val (usually 0.25 psec). (Later in this appendix we will

discuss the effects of using only eight lags.)

B.2 Correlator algorithms

We will now derive the algorithms used by the Mark III

correlator to estimate the correlation function from the data

recorded on the tapes during an observation. Several approx-

imations will be made while deriving these algorithms and we

will investigate the effects of these approximations on the

VLBI measurements in Section B.4.

The algorithms will be derived for USB data; the LSB

algorithms may be derived using the same procedures. While

deriving the correlator algorithms we will introduce many

symbols. In Table B.2.1, we define each of the symbols we

will be using frequently. (This table is meant as a conveni-

ent reference, more exact meanings (if necessary) of the

I



-313-

Table B.2.1 Summary of symbols

x (t +offset), x2(t +offset) the USB signals recorded at sites

1 and 2.

t. the epoch of the jth, 4 Psec data segment.

tc the epoch of the center of the qth accumulation

period.

ti the epoch of the first bit in the ath accumulation
q

period.

tc the epoch of the corrections to the a priori group
Ic

delay, phase delay rate and visibility phase (usual-

ly near the center of the observation).

At the difference in the epoch of the qth accumulationqc

period, tc, and tc -
q

At s  the sampling interval (Ats = 1/(2B) = 0.25 psec).

N(q) the number of bits correlated in the qth accumula-

tion period.

T the duration of a short segment of data (4 Psec)
s

Tac the duration of an accumulation period (typically 2

sec).

T the duration of the observation (100-400 sec).
obs

4

the lag between the tapes during correlation (con-

tinuous variable).

A'1i  the discrete lag index (integral multiples of Ats);

*, .. . . • . . . . . . . ..-- 4~* - - ---. . . . . . . . . ..
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Table B.2.1 Continued

the actual lag between the tapes will be AT + bSap

(see below).

T the a priori value of Tg (see Table B.1); in most
ap

cases Tap will be a function of time.

ap the a priori delay at the center of the observation.

b( ap) the nearest bit shift to T ap for the ith segment of
ap ap

data (at the center of the segment).

b (T b )j when reference to a particular segment is nottap ap

needed.

(iap)q the a priori value of the phase delay rate at the

center of the ath accumulation period.

Rc (AT.) the USB complex cross correlation function at lagU

u 1i At i •

Rc (AY.) the LSB complex cross correlation function at lag

C.(W ) the video cross spectrum of the jth segment of data)v

(W takes on discrete values between 0.25 MHz and
v

1.75MHz). Strictly, this is the conjugate of the

cross spectrum as defined in Table B.1; see discus-

sion concerning Table B.1.

Ca qr(W ) the video cross spectrum coherently averaged over

the qth accumulation period, r represents the radio

frequency (RF) of the channel from which the data

were taken (see comment above).

-, ' .p. ". .. .. . . . " . " .. . .. , . , . . .. , , . . : . , , . .. . < .
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Table B.2.1 Continued

Wr the radio frequency of wv=0 (video DC) in channel r.

o 0 the radio frequency to which the visibility phase is

referred!

'=Wr +tB the radio frequency corresponding to the center

frequency of channel r*

B the recorded bandwidth (Hz).

6T and 6t the trial values of the corrections to the ag p

priori values of the multiband group delay and phase

delay rate, respectively.

6 ib the correction to the a priori value of the single

band delay.

6' the single band delay index (16 values of 6Tb spaced

at half the sampling interval, At s).

the value of 6T which maximizes the multiband delay

function.

Dr (6r) the single band delay function for the _th accumula-

tion period for channel r; see Section B.2.

AC(M general symbol to denote the integrated cross

spectrum (exact meaning will depend on context).

w egeneral symbol to denote the error in the rate ofe

counter rotation of the cross spectral components.

all frequencies denoted by w are angular frequency measures

(rad/sec) .

- .-
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symbols will be given in the text.) We start deriving the

algorithms by carrying out the correlation of the data in

short segments (each of 4 Psec duration, i.e. 16 data

samples). Later we will see that, in practice, it is not

necessary to correlate the data in this fashion. By forming a

complex correlation function, we can correlate long segments

of data (of up to 2 sec duration). These long segments are

called accumulation periods. The 4-psec-segment correlation

technique will, however, give us a convenient means of

deriving, and studying the limitations of, the complex

correlation function procedure.

We denote the USB data on each tape by xl(t +offset) and

x2 (tj+offset). The time arguments for the data are specified

in two parts, t. is the epoch (at site 1) of the center of the

4 psec segment to which a particular data sample is assigned,

and the offset gives the epoch of the data sample relative to

this central epoch. These time arguments are given in dis-

crete form because we have sampled the signals at discrete

times. Using the techniques we discussed in Appendix A, we

compute the cross correlation function at eight lags from 16

samples each of x, and x2 . The value of the cross correlation

function for each of the lags, AMi, evaluated using the jth

segment of data, will be denoted by Rj(i. This cross

function coefficient is given by

8 b
Rj(M i ) -£ xl(t X + kAt kt s - ap i ,

4 ) ~~~~~ ku 7 )(t+( ) +kt-

(B.2.1)

I- . ' - . - , . . - , . , -• . - o • . . . . . - . . ' ., - . ° . . - , . % . , . , o " , , ° . - .° . %
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where the A i, the lag indices, are integral multiples of the

sampling interval Ats , and (Tb). is the epoch of the bit

nearest to the a priori estimate of the delay between the

tapes at the center (k=0) of the 2 th segment of data. When

(Tp) b is converted to a offset of the tapes to compensate forapj
this delay, the offset is called the "bit shift." The cross

spectrum can now be computed from this cross correlation

function. The cross spectral components C.(W,) from the Ith

segment will be

3 e iW AT
C.(W) = Z Rj(A e v i (B.2.2)

i=-4

where wv are 7 video frequencies spaced at intervals of 0.25

MHz over the 2 MHz bandwidth commencing from 0.25 MHz. We now

wish to sum together these cross spectral components from each

data segment accounting for the changes in phase due to the

phase delay rate. But we must remember the cross spectral

components which we have computed at video frequency are the

same spectral components which were originally at wv+Wr, where

(r is the radio frequency (i.e., wl in earlier discussions) of

the rth channel in which the data were taken, of the signal

when the signal arrived at the radio telescopes. (We derived

the expressions which relate the video cross spectrum to the

RF cross spectrum earlier in this appendix (see Equations

(B.1.6)). In those derivations we needed to distinguish

between the sum of the LO frequencies at the two radio tele-

scopes (hence the notation w and w2 ). We now need to distin-

guish between each of the channels and hence the change in

. ... . . .- .q. .- A . -
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notation.) The phases of these cross spectral components will

be changing at a rate given by the product of their original

frequency (wv+Wr) and the phase delay rate. Hence the accumu-

lated cross spectrum will be given by

n(q) -i(W +W (ta) (t.-t c

Cqr ( E C(W) e (B.2.3)

where n(q) is the number of data segments in the qth accunu-

lation period, tc is the epoch of the center of the qth accu-q
mulation period and (ia) is the a priori phase delay rateap q

computed at the center of the acumulation period. We should

note that this expression is only valid for v >0. For w v<0

the sign of wr should be changed (see Equations (B.l.4)). The

cross spectral components for w v<0 are not correctly rotated.

This error is not a problem because the delay resolution

function only requires the cross spectral components with wv >0

for USB data (see discussion associated with Equation

(B.1.6)).

When we combine all of the previous formulas together we

obtain

n(q)3 8 b (tb

qrlv jl i4 k=7 s2( apj j -

exp{-i[wvri + (wv+wr) ('ap)q(tj-tc))

(B.2.4)

If we rearrange the terms in the above equation and substitute

WI' Wr+%B (w' is the radio frequency corresponding to the
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center of the video band), we obtain

3 n(q) 8
atb +ketsA.)Cqr( v E E I Xltj +kts) X2(tj +lap)j si=f-4 j=1 k=-7

exp[-wl~i t t c exp[-iwvA-r i ]

exp[-iw (e- 7B) (Ia~ (tj-t) c (B.2.5)
v ap q j q

The last term in the above expression represents the differ-

ential rotation of the cross spectral components at wv rela-

tive to the component at the center of the video band, due to

the phase delay rate. If we neglect this term we see that the

video frequency only appears in one other place (the exp

(-iwvAri) term). The exp (-iWv A i ) term is independent of j

and k and hence we can perform the summation over j and k

without specifying which wv will be used (we should note that

wr does not depend on the choice of wv either). (If the last

term is included in the summation, then wv must be specified

in order to carry out the summation over j). Also, if we

re-examine the summations over j and k, we see there is no

reason to keep them as separate summations when the last term

in Equation (B.2.5) is neglected. So we will combine these

two summations together. To combine the summations we need to

change the way we specify the epoch of a bit as a function of

the summation indices. We will introduce a new summation

index which is related to j and k by p = 16j + k (remember

that the j index steps through the segments, each of which is

16 bits long). The epoch of a bit at Site 1 will now be given

1 1.by tq+Pat,, where t is the epoch of the first bit (at Site
q q"Ib ptweet

a ' .i-i* * ' * 4* * * * . .,
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1), in the accumulation period (i.et t1+pAts - tj+kAt s when p

- 16j+k). With the introduction of the summation index p,

Equation (B.2.5) becomes (when we neglect the exp(-i(w -%B)
V

q (tj-t )) term),

a ~ 3 N(q) 11 b
a r ) - E _ x (tq+ PAt s)x 2 t+ .b p + Pat s- A i)qr (t~v) " i=-4 p=l q app

exp[-iw'(t )(t -t q ) } e-ivA'i , (B.2.6)ap q p q

where N(q) = 16n(q) and equals the number of bits in the qth

accumulation period. The inner summation is called the com-

plex cross correlation function, Rc(Ai), which is evaluated

at 8 complex lags (the complex lag is the combination of the

lag AT. and the rotation exp[-iw'(tap) q(tp-t-)], i.e.

N(q)
Rc( i) = NE x (t1+ pat )x (t 1 + (b ) + pat s - A

u p=1 1 q S2 q app s 1

exp[-iw' (t )(tp-tC) ] . (B.2.7)

ap q p q

The cross spectrum is obtained by computing the Fourier

transform of the complex cross correlation function. The

Fourier transform is approximated by the summation over i in

Equation (B.2.6). The use of 4 psec segments of data is now

no longer necessary; all the data in an accumulation period is

summed directly into the complex cross correlation function.

B.3 "FRNGE" algorithms

Now that we have derived the correlator algorithms, we

are ready to develop the algorithms used by FRNGE. The

-0-
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correlator only computes the complex cross correlation func-

tion. The components of the cross spectrum are computed in

FRNGE. Once these components have been computed, they can be

used to evaluate the delay resolution function for trial

values ig, of the group delay and phase delay rate.
g p

The delay resolution function was given in Appendix A

(Equation (A.10)). When the cross spectral components from

all accumulation periods are used, the delay resolution

function becomes

Q R 7 tac )1: r Ca (w .) exp[-i (w +vj-wo) 81g-i W+ ) 6Vp(t

q=1 r=1 j=-7 qr vj r r+vj p q c

(B.3.1)

where 6iq and 6ip are, respectively, the corrections to the

group delay and the phase delay rate at the epoch tc of the

observation (usually tc is near the center of the

observation). The summation over _s represents a summation

over time, Q being the number of accumulation periods; the r

summation index runs over the number of frequency channels

(typically 48 for geodetic observations); and the j index runs

over the discrete video frequencies for upper and lower

sidebands (in earlier equations we did not need to specify

discrete video frequencies and hence we did not use a

subscript). (The summation over j excludes the video DC term j

= 0.) (In Equation (A.10) these three summations were

expressed as a single summation (see comments made at that

time) .) If only one sideband is available the summation need

only be evaluated for the video frequencies which are
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available.

If we had an infinitely fast computer, or were planning

to make only a few Mark III observations, we could directly

sum Equation (B.3.1) using a series of trial values for 6i

and 6;p until we found the maximum value of Equation (B.3.1).

5(In a typical observation 105 values for 6i and 6%p are

tried.) Unfortunately, computers work at finite rates and the

number of Mark III observations is not small (between July,

1980, and January, 1982, over 60,000 Mark III observations

were made in geodetic experiments). Consequently the actual

calculation of Equation (B.3.1) is not by direct summation. A

large saving in computation time can be made by adopting two

group delay estimates rather than the single one (6i ) shown
g

in Equation (B.1.1). These two delays are called the multi-

band group deli and the singleband group delay. The multi-

band group delay is determined from the change of phase

between the widely spaced frequencies, the singleband group

delay is determined from the change of phase across the 2 MHz

recorded bandwidth. (There are other distinctions between

these delay types which will be discussed later.)

We may incorporate the singleband delay in Equation

(B.3.1) by writing this equation as

R 7 a
1 C ) exp--i(w W )6i- i(W + v )6t (tc

Svj r - r vj p q c

(B.3.2)
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where 6 b is called the single band delay. We don't seem to

have saved any computer time by introducing the singleband

delay. Actually, the maximization of Equation (B.3.2) would

take longer than the maximization of Equation (B.3.1), because

in the former case we need to search over three quantities

(veg, 6tp and 6 1b ) . The improvement in the computation time

comes about by using an efficient method to search over the

values of 61g, 61p and 61b .

The values of 6ig, 6*p and 6 b which maximize Equation

(B.3.2) will be the maximum likelihood estimates (within the

limits of the approximations made during the derivation; see

Section B.4), of the multiband group delay, singleband group

delay and phase delay rate. There are a number of techniques

we could use to perform the maximization, e.g. "brute force"

searching, using successively finer spacings of the trial

values until a maximum is found, or we could perform a

"coarse" search and use the least squares estimator with the

coarse search estimates as the a priori values (see Appendix

A). For the remainder of this appendix, we will discuss one

particular implementation of the maximization of Equation

(B.3.2), that carried out in the Haystack Observatory's

program "FRNGE." This program has been used to process all of

the data which is analysed in Chapters 3 through 8. The

program "FRNGE", being software, is subject to change

(especially if its algorithms are found to deficient). The

algorithms which we will discuss are those used at this time

(May, 1983) but they may change in the future (see, e.g., the
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discussions in Section B.4 on the neglect of video rotation),

making obsolete some of the discussion which follows.

The efficent search methods are developed by carrying out

the summations in Equation (B.3.2) in stages. Firstly, the

summation over j is performed to generate the "singleband"

delay function, Dqr(6L), (the remaining summations are

performed later),

7
D (6 E) =_Cqr (W .) exp[-iw 6 '] (B.3.3)qr j= 7 qr vj v b

Equation (B.3.3) is evaluated at 16 trial values of the cor-

rection, 6& , to the a priori delay, spaced at half the sam-

pling interval and centered on zero. Before proceeding, let

us consider the meaning of Equation (B.3.3). If we were to

maximize the magnitude of D qr(6'r) by searching over many

values of 5 , what would be the results (assuming that 6T is

no longer restricted to the 16 discrete values)? For dual

sideband data, the value of 6L which maximizes the magnitude

of Dqr (6,r), would be a least squares estimate of the slope of

the cross spectral phases across the combined 4 MHz channel

* pair. For single sideband data, the slope is across the 2 MHz
channel; see Appendix A. The phase of Dqr(5 b), where is

the value of 61 which maximizes the magnitude of Dqr(65 ) ,

would be the estimate of the intercept of the sloped line at

w = 0, the DC edge of the video band, which corresponds to

the radio frequency wr (see Section B.1). We will refer to

this intercept as the "video DC phase". Consequently,

maximizing the singleband delay function can be viewed as

-. . . . . . .. e r-4
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estimating, from the 14 cross spectral phases for dual

sideband data, a slope across the recorded bandwidth (the

singleband delay) and a phase at video DC (the video DC

phase). If single sideband data are used, only seven cross

spectral phases are used to estimate the slope and the inter-

cept. These concepts of the nature of the singleband delay

function will be important later on.

The uniform spacing of the values 6T; allows Equation

(B.3.3) to be computed using a 32 point fast Fourier transform

(FFT) routine.

After the computation of the singleband delay function,

the remaining summations in Equation (B.3.2) are carried out

for many trial values of the phase delay rate and multiband

group delay . These summations are again carried out using

FFT routines. To facilitate using the FFT routines the phase

delay rate summation is computed for trial values of the

"fringe rate" rather than for trail values of the phase delay

rate. (The "fringe rate" is defined to be wr1p, and repre-

sents the rate of change of phase with time, in contrast to

the rate of change of delay with time, which is the phase

delay rate. The fringe rate is used in doing the FFT's

because standard routines (contained in firmware) which use

the standard transformation between the "time" and "frequency"

domains can be directly used.) The FFT's constructed using

the fringe rates and the multiband delays are called the

"fringe rate spectrum" and the "multiband delay function."

The maximum value of the multiband delay function will

AM
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occur at the trial values of the multiband group delay, the

singleband group delay and the fringe rate which are closest

to the values of these quantities which maximize the delay

- resolution function. The FFT's used to compute the multiband

delay function can be computed very rapidly which allows the

evaluation of the multiband delay function at a large number

of trial values of g' Ib and (Usually between 128 and 256

values are used for ig and Ip, 16 values of ib are used as

mentioned earlier (ib will not be determined very accurately

and hence does not require a fine spacing (see earlier discus-

sions on the interpretation of the singleband delay)).) To

determine the final values of Ig'Tb and t an iterative pro-
gI~b p

cedure is used in which the delay resolution function is

summed directly using finer spaced values of 1g and 1p which

are centered on those values, found from the FFT's in the

first iteration, or from the previous iteration in subsequent

iterations. (These summations will only be carried out a rela-

tively small number of times and hence the efficiency of the

FFT's is not needed.)

The delay resolution function, R(6 g '6 1p' 6 :rb), as

implemented in FRNGE, is constructed from the singleband delay

functions (rather than from the cross spectral components) by

direct summation of these functions:

- Q R
R g(6 p b) = E E D (5r ) exp[-i(r- wo)"gq=l r=l qr g

4 -_iW 6fp(t c )t cal it Br (6 b
r p q c r qr(b

(B.3.4)

• . ... . ~ ~ *. ... % % . % %
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where cal is the phase calibration phase for the rth channelr

(these phases are discussed in detail in Section 2.3); 6L is

the value of N which maximized the multiband delay function

(remember that 6 ' were 16 discrete values used to construct

*' the single band delay function). The final term,

(-inB qr (61-6)), in Equation (B.3.4) we will examine in some

detail. The variable nqr is given by

71qr = [N1 (q)-Nu(q)J/[Nt(q)+Nu (q)] (B.3.5)

where Nu(q) and N (q) are the number of bits correlated in the

upper and the lower sidebands, respectively, in the 3 th

accumulation period. (Prior to this time we had not needed to

distinguish, in the summations, between upper and lower side-

bands and hence we have been using one symbol to denote the

total number of bits correlated in both sidebands, N(q), (N(q)

= Nu(q)+N 1 (q); see Table B.2.1).) If we examine Equation

(B.3.5) we see that if only USB data are available 'lqr=-l,

i.e. N1 (q)=O; if only LSB data is available, nqr=+l, i.e.

SNu (q) = 0. We first consider these two limiting cases. In

Figure B.3.1 we show graphically the purpose of this last

term. In the upper plot we show the cross spectral phases

from USB data in two frequency channels (we have chosen just

two to simplify the figure). Because the singleband delay

index 6T' is discrete, the value of 6Tb which maximizes

D(61g, 6 eb, 6t p) will not necessarily correspond to one of the

discrete indices. The singleband delay is obtained from the

least squares fit of a group delay and a phase at wr (video
jr
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Figure B.3.1 Effects of the discrete singleband delay on the video DC

phase estimates
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DC) to the cross spectral phases in the 2 MHz bandwidth

channels (see discussion on Equation B.3.3). Because the

singleband delay function (Equation (B.3.3)) is evaluated at

discrete, equally spaced, values of 6T; (rather than at the

value of 6 ib which will maximize the delay resolution), the

phase at wr will be in error by -nB(8 b-6  ) when only USB

data used (also see discussion below). The final term in

Equation (B.3.4) corrects for the phase error at video DC.

Figure B.3.1.b shows the effects of the discrete single-

band delay on LSB data. From this figure we clearly see the

same error as in the USB case except that the sign of the

error has changed. Figures B.3.1.a and b should indicate why

the term involving qr is included in Equation (B.3.4), but

how do we correct the immediate cases when some data are

available in both sidebands? We need to calculate the video

DC phase error (see discussion on Equation (B.3.3) which will

result, when we perform a least squares fit of a slope and

intercept to unequally weighted data, when the slope is total-

ly constrained to a specific value (see Appendix E for a

discussion on constrained least squares estimation). The

value of qr will then be calculated to correct for this

error. (The values of the slope are constrained because the

single band delay function has only be computed at discrete

values of 6T.) This estimation problem is simplified by the

weights, given to each cross spectral phase, being equal

within a sidband. (This is not quite true because the

response of the bandpass filters, in the video converters, is

.7
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not constant across the 2 MHz bandwidth of each sideband. See

Section B.4 for more details.) Since the weights, within a

sideband are approximately equal, we may replace the seven

cross spectral phases, from each sideband, with their mean

value at their central frequency (1 MHz for USB and -1 MHz for

LSB). Consequently, the phase error at video DC, when the two

sidebands are combined, will be the weighted mean of these

central frequency phases. The difference, AOw' between the

weighted mean and the algebraic mean, will be given by

Ow = [fw /(wu+w)J (-%B) + [wu/(Wu+W1 ) I () (6bF

(B.3.6)

where wu and w are the weights given to the phases from the

upper and the lower sidebands. In Appendix A, we saw that the

weights to be used during the least squares solution are

proportional to the product of the number of bits correlated

and the product of the antenna temperatures divided by the

system temperatures at the two sites in the interferometer

(see Equation (A.19)). The latter term in the weight (i.e.,

the product of the antenna temperatures divided by the system

temperatures), will probably remain constant during an obser-

vation (typically 100 sec) and hence the major variations in

* the weights assigned to each sideband will be due to changes

in the number of bits correlated. Hence if we replace wu and

w with Nu (q) and N (q), in Equation (B.3.6), we obtain the

* expression containing qr in Equation (B.3.4). The possible

errors which are introduced into the estimates of the multi-

... -- ) ...... * -p *-
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DC) to the cross spectral phases in the 2 MHz bandwidth

channels (see discussion on Equation B.3.3). Because the

singleband delay function (Equation (B.3.3)) is evaluated at

discrete, equally spaced, values of 6TL (rather than at the

value of 6 ib which will maximize the delay resolution), the
phase at Wr will be in error by -B(6 when only USB

data used (also see discussion below). The final term in

Equation (B.3.4) corrects for the phase error at video DC.

Figure B.3.l.b shows the effects of the discrete single-

band delay on LSB data. From this figure we clearly see the

same error as in the USB case except that the sign of the

error has changed. Figures B.3.l.a and b should indicate why

the term involving iqr is included in Equation (B.3.4), but

how do we correct the immediate cases when some data are

available in both sidebands? We need to calculate the video

DC phase error (see discussion on Equation (B.3.3) which will

result, when we perform a least squares fit of a slope and

intercept to unequally weighted data, when the slope is total-

ly constrained to a specific value (see Appendix E for a

discussion on constrained least squares estimation). The

value of qr will then be calculated to correct for this

error. (The values of the slope are constrained because the

single band delay function has only be computed at discrete

values of 6.) This estimation problem is simplified by the

weights, given to each cross spectral phase, being equal

within a sidband. (This is not quite true because the

response of the bandpass filters, in the video converters, is

I.°
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not constant across the 2 MHz bandwidth of each sideband. See

Section B.4 for more details.) Since the weights, within a

sideband are approximately equal, we may replace the seven

cross spectral phases, from each sideband, with their mean

value at their central frequency (1 MHz for USB and -1 MHz for

LSB). Consequently, the phase error at video DC, when the two

sidebands are combined, will be the weighted mean of these

central frequency phases. The difference, AOw , between the

weighted mean and the algebraic mean, will be given by

AO = [[w /(wu+w )] (-irB) + [wu/(Wu+W) I (%B) ] -

(B.3.6)

where w and w are the weights given to the phases from theu

upper and the lower sidebands. in Appendix A, we saw that the

weights to be used during the least squares solution are

proportional to the product of the number of bits correlated

and the product of the antenna temperatures divided by the

system temperatures at the two sites in the interferometer

(see Equation (A.19)). The latter term in the weight (i.e.,

the product of the antenna temperatures divided by the system

temperatures), will probably remain constant during an obser-

vation (typically 100 sec) and hence the major variations in

the weights assigned to each sideband will be due to changes

in the number of bits correlated. Hence if we replace wu and

w with Nu (q) and N (q), in Equation (B.3.6), we obtain the

expression containing qr in Equation (B.3.4). The possible

errors which are introduced into the estimates of the multi-
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band group delay by the use of the discrete singleband delay

are discussed further in Section 3.1.

The need for this correction to the phase at wr could be

eliminated if the singleband delay functions were recalculated

from the cross-spectral components at 6T b. This approach

would however lead to considerably more computations. If

these additional computations were carried out (and conse-

quently n qr set to zero in all cases), Equation (B.3.4) would

be the same as Equation (B.3.2), with the addition of the

phase calibration phases. (There is one term neglected in

going from Equation (B.3.2) to Equation (B.3.4): the term

-iW j p (t ct c). We will discuss the effect of this approxi-vj p qc

mation when we are investigating a similar term which was

neglected in deriving Equation (B.2.6), namely

-iW j~ (tjt )  .
vj p j- q

A parabola is fitted through the magnitude of the delay

resolution function evaluated at three points centered on and

equally spaced about the estimates for the multiband group

delay, singleband group delay and phase delay rate from either

the FFT's or the previous iteration. Such a parabola is

determined separately for each observable, i.e. the parabola

is fitted in only one dimension. The phase delay rate is

4 fitted first, followed by the multiband group delay and then

the singleband delay is estimated. The fitting process is

repeated twice more using the new estimates of the multiband

delay, phase delay rate and the singleband delay. The final4
iteration is carried out with half the spacing of the trial

~~~~........................... "..........." .''.'- :'. - ,.i" -.-"" * *" '' . **.' * " ' '," " '. "'''.'"''.'-'.''''" " " "- "
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values for the multiband delay and phase delay rate. The

visibility phase is then obtained from the phase of the delay

-* resolution function evaluated at the final estimates of the

multiband delay, single band delay and phase delay rate.

Is this search technique assured of converging to the

actual maximum value of the delay resolution? If it were

iterated an "infinite" number of times, using successively

finer spacings for the one dimensional parabolic fits - yes.

To see why, for the delay resolution function, convergence is

assured (it isn't assured for all functions) , we need to

S consider several properties of the delay resolution function

and the initial search algorithms. We stated earlier that the

initial search over many trial values is carried out using

FFT's. We may use several properties of Fourier transforms to

deduce the properties of the delay resolution function. The

delay resolution function is "bandlimited" (see, e.g.,

Bracewell, 1978, for a discussion on properties of discrete

Fourier transforms) , in both the delay and rate domains

because only a finite bandwidth is spanned (usually <400 MHz),

and observations are of a finite duration (usually between 100

and 400 sec). Because the spanned bandwidth and observation

duration are finite there are finite maximum frequencies which

can exist in the delay resolution function. (We are using

frequency here as a general term to indicate variations of the

magnitude of the delay resolution function with changes of 6T

and 6i rather than in its usual sense of variations with

time.) The highest frequency variations which can occur with

*45
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changes in 6i and 6i are the inverse of spanned bandwidth
g p

and the inverse of the duration of the observations,

respectively. The initial trial values 6i and 6i are
g p

separated at most by a quarter and a half of the inverses of

these highest frequency variations, respectively. (The

numbers of trial values of 61 and 61 are selected to be the
g p

smallest powers of two (to insure efficient operation of the

FT's (Bracewell, 1978, Chapter 18)), which will sample the

61 9 p space with at least these frequencies.) For a 100

sec observation with a spanned frequency range of 400 MHz, the

q initial spacings of 6T and 8t will be at most 0.6 nsec and
g p

0.6 psec/sec (at X-band). Because the fringe rate spectrum

and multiband delay function are oversampled, we are assured

that the initial search values, which yield the maximum value

of the multiband delay function, are within half of the search

value separation, of the peak of the delay resolution

function, i.e. we know the peak cannot be located nearer to

any other values because this would require higher frequencies

in the delay resolution function than can exist.

Once these initial values are found, the maximization is

carried out with one-dimensional fits, and re-computation of

Equation (B.3.4) at the fitted values, repeated three times.

The peak of the delay resolution function will be reached when

oR/6'rg=0 and 8R/bp=0 (these conditions are satisfied by the

2 2 2 2 2above technique), provided 8 R/8 Tg+8 R/8 > a R/(8 gbp),
9 p g p

(Hildebrand, 1976, pp. 356-357). This latter condition is

satisfied by the delay resolution function and may be
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confirmed by direct differentiation of the function.

Consequently, the converged values of the one dimensional fits

will be at the maximum of the delay resolution function.

When we introduced the singleband delay, the reason

stated was for computational efficiency. But, there is a

second reason for the introduction of this delay. Consider

the effects, on the cross spectral phases, of adding a piece

of (ron-dispersive) cable (or any delay introducing device),

between the first LO and the IF distributor (see Figure

2.1.2). The arrival time of the signal at the sampler (see

-4 Section 2.1) would be later than in the case where the addi-

tional cable was not present. All of the cross spectral

phases would change by an amount given by the product of their

intermediate frequency (because the cable was inserted between

the first LO and the IF distributor) and the delay through the

cable. In addition, the phase calibration phases would also

change by the product of their IF frequency by the delay.

When we introduced the singleband delay function (Equation

(B.3.3)), we discussed that maximization of this function

essentially allows us to replace the fourteen or seven

(depending on whether dual or single sideband data are used),

cross spectral phases in each recorded channel with a slope

(the singleband delay) and an offset (the phase at video DC).

Clearly, this slope will be affected by the additional cable

and hence the singleband delay estimate will change. However,

the change in phase at video DC will be the same as the change

in the phase calibration phase at the correponding RF and

6"
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hence when the phase calibration is applied (see

Equation(B.3.4)), the calibrated phases (at video DC) will be

the same as these phases before the cable was inserted. (This

"equality" is not exact because the phase calibration signals

will have a frequency 10 kHz higher than that of the video DC.

Provided the delay introduced by the cable is less than 277

nsec, the difference between the video DC phase and the phase

calibration phase will be less than 1 degree.) Since the

multiband delay is estimated from the changes in the video DC

phases between channels, the multiband group delay will not be

affected by this additional cable.

We can now extend these arguments to show that all delays

in the receiver and cables, after the injection of the phase

calibration pulses, are calibrated by the phase calibration

system (if this system is functioning correctly; see Section

3.2) and the multiband delay will be unaffected by these

delays. The multiband delay measures the difference in

arrival times of the signals from the radio source at the

injection point of the phase calibration pulses. On the other

hand, the singleband delay measures all of the delays through

the receiving system. The singleband delay measures the

difference in arr-val times of the signals at the samplers.

Consequently, the singleband and multiband delays measure the

difference in arrival times at different locations. If the

delay through the receiver remains constant then there should

be just a constant offset between the singleband and multiband

delays.
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The location in the receiver to which the singleband and

multiband delays are referred could be made the same,

assumming that the contribution of the receiver electronics to

the cross-spectral phases varied linearly with frequency over

the 2 MHz recorded bandwith, by extracting the phase of the

calibration rail at the mid video frequency (i.e. 1.010 MHz).

This technique has not been adopted in the design of the Mark

III 'see Section 2.3 for discussion).

We should also note that the group delay will be deter-

mined predominantly from the changes in the phase between

channels (which will span 100-400 MHz). The additional

information about the group delay which would be supplied by

the change in phase across only 2 MHz will only have a small

effect on the knowledge of the group delay from the channel to

channel variation in phase.

B.4 Analysis of the effects of the approximations made in

implementing the delay resolution function

We have now completed the discussion on the algorithms

used to estimate the group delay, the phase delay, and the

phase delay rate. We did, however, make a number of approxi-

mations while deriving these algorithms. The approximations

were

1) The use of only 8 lags in calculating the cross

spectrum from the cross correlation function

2) The use of 3 level sine/cosine functions to do

D~ .o ,, . .° .. • m .'" " . , " . ' , " " " - - • " .-. ° D • " " .
o °"

" " .'• - ' ° -
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rotations.

3) The neglect of the rotation across the video band

while accumulating the complex cross correlation

function and while summing the delay resoution

function.

4) The accumulation of the cross correlation function for

the duration of the accumulation period (up to 2

seconds) using an a priori phase delay rate which may

not be correct.

These approximations will be analyzed in the order

listed. We will be concerned with their effects on the multi-

band group delay, the phase delay and the phase delay rate.

In Figure B.l.1 we saw that the cross correlation func-

tion decayed rapidly as the offset betweeen the tapes was

moved away from the actual delay at the epoch of recording.

But is eight lags (0.25 Psec apart) enough to calculate ade-

quately the cross spectrum from the cross correlation func-

tion? For the initial analysis of this problem we will assume

that the power spectral density of the video signals are

independent of frequency over the 2 MHz bandwidth of each

channel. For this case we may calcuate the cross correlation

in analytic form and compute the cross spectrum from the cross

correlation function at the eight lags computed by the

correlator. We may then directly compare these estimates of

the cross spectrum components with the actual cross spectrum

to evaluate the errors introduced by using only eight lags.

This problem was analyzed by Whitney (1974), but he
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considered the errors introduced by using seven lags (the

number of lags used in the Mark I correlator). For his

analysis he also assumed that the actual group and phase

delays were zero. This assumption is not realistic because

even if the delay were zero at one epoch in an observation it

would be nonzero at other times because of the (nonzero) phase

delay rate. For a phase delay rate of 2 4sec/sec, the delay

would change by 200 sec during a 100 second observation.

The cross correlation function of the USB video signals

is given by Equation (B.1.7). For the analysis of the effects

of using only eight lags to compute the cross spectrum we will

simplify the form of Equation (B.1.7) by assuming that 'g = p

and A$u (t) = 0. We will also replace wi by wr (the RF of the

rth channel from which the data were obtained), which is

consistent with the notation of Equation (B.3.2), (see also

Table B.2.1). (We will investigate the effects of relaxing

these assumptions after we have carried out an initial

analysis of the problem.) In its simplified form, Equation

(B.1.7) becomes

sin(,nB (t)-T))
R 2 (-C) = cos(WrTg(t) + B(rg (t)-)) ( -T)

(B.4.1)

0
where T (t) represents the delay at time t, i.e. we have

g
incorporated the phase delay rate term into the delay T (t).

g
To compute the cross spectrum, the correlation function

was evaluated at eight lags about the bit shift closest to the

a priori estimate of the delay. The cross spectrum, computed

0 "
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for discrete values of video frequency between 0.25 MHz and

1.75 MHz, and spaced at 0.25 MHz intervals, was determined by

Fourier transforming the correlation function evaluated at the

eight lags. The phases and amplitudes of the cross spectral

components were then used to estimate the phase at video DC

(this phase should equal the phase at RF) and the group delay

across the 2 MHz bandwidth, i.e the singleband delay (see

discussions in this appendix concerning the maximization of

Equations (B.3.1) and (B.3.2)).

We will use this simple model to study some of the

properties of the errors introduced by using eight lags. We

will then study this problem using a correlation function

which more closely matches the actual properties of the

signals recorded on tape. The results obtained using this

second approach will be compared with the results from actual

correlation tests. All of these tests will be carried out

initially for USB data only. We may then easily deduce the

effects of this approximation (using only eight lags) on the

LSB data and dual sideband data.

* Equation (B.4.1) has two important properties. Firstly,

the cosine expression contains a very rapidly changing term:

-6W-C (t). For Wr=8 Ghz and ip=ixl0 - , this rapidly changing
r g rp

term will rotate through a full cycle in 125 psec, corres-

ponding to correlation of 500 bits from each tape (during a 2

6
sec accumulation period, 8xl0 bits will be correlated).

Secondly, even if the a priori values of the group delay and

phase delay rate were known exactly, the difference v (t)-
g

is%
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could not be kept constant because T can only be changed at

integral multiples of the sampling rate.

In Figure B.4.1, we show the bounds of the phase errors

at video DC (see discussion of the singleband delay function

(Equation (B.3.3)) for reasons for computing the phase error

at video DC), for values of g(t)-ap, where Tap is the a

priori estimate of T (t), ranging between -0.8 and +0.8 psec.
g

These phase errors at video DC are a direct measure of the

error in the visibility phase. In the insert to the figure we

show for a very small section the actual behavior of these

phase errors. Each cycle of the phase error will be sampled

=500 times for 8.0 GHz data and =2000 times for 2.0 GHz data.

The samples over each cycle will therefore average to the mean

value of the bounds. The mean value curve is shown as the

dashed curve in Figure B.4.1.

During correlation, 9(t)-Tap will not remain fixed at one

location on the mean value curve because T (t) is changing
g

continuously while ap the nearest bit to the a priori delay,

b
can only be changed discretely, i.e. during correlation Tap is

used not T (see Table B.2.1 and Section B.2). The bit
ap

offset between the tapes is kept within ±0.125 psec of the a

priori delay as the data are correlated. The final phase

error will thus be an average of the phase errors over the

inteval ± .125 psec about the error in the a priori delay.

The average values of the phase errors are shown in Figure

B.4.2.

It should be noted that the phase errors are anti-

4- - - , , ; ' ; ' . " ,:- . '-", ; 3,/ ' ' .'---. ,'- -.
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-Figure B.4.1 Bounds on the phase errors introduced by using only
8 lags to compute the cross spectrum.
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Figure B.4.2 Averaged phase errors due to using 8 lags during correlation

For 2 M4z perfect band pass filter
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symmetric about 0.125 gsec, not about zero. The asymmetry of

the error about zero will lead to phase delay "closures

errors" around triplets of baselines if the a priori delays,

when referred to a common epoch, sum to zero around the

triplet. (We discuss such delay closure errors in more detail

in Chapter 3.) The asymmetry can be removed by using an odd

number of correlator lags.

The phase errors shown in Figure B.4.2 should be easily

detected by correlating a pair of tapes a number of times

using different values for the a priori delay each time. This

series of correlations was carried out by A.E.E. Rogers at the

Haystack Observatory. Before we present the results of this

test we should re-evaluate our model for the phase errors,

trying to match our model to the real Mark III system as

closely as possible.

The first improvement we can make to the model is to

replace the perfect (i.e., "flat") 2 MHz bandpass filter with

a more realistic filter. The Mark III video converters use a

seven pole Butterworth filter (see, e.g., Mason and Zimmerman,

1960) to filter the output of video mixers before the signals

are clipped and sampled. This filter will determine the

properties of the power spectrum of the recorded signals. The

transfer function for the Butterworth filter is given by

(Mason and Zimmerman, 1960, p.426)

P
H(w) - n (iv - Sj)-I

j=l

where S. = exp[-ii(P+2j-l)/(2P)] and represents the poles of

J"
....... . -: .-,...4.-.- . ; ..-.• . . . .. . .. -.- ..- - .. ....... ,q . .... ....- - . < -, .. ; .. :

,.... . .... : , , • . .. . . , . I . . '.- - - - - . ~ & .m , ,, &. j . . i . . .
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the filter, P is the number of poles (seven in our case),

V=W/Wb and wb is the fullwidth at the 50% (-3db) power points

for the filter output. For the Mark III video converters wb=

1.8 MHz. The seven pole Butterworth filter power response is

shown in Figure B.4.3. When the Butterworth filter is used

the cross spectrum, Cu(wv) , (the superscript b denotes that

this is the cross spectrum which would be obtained when

Butterworth filters are used), of the recorded data will be

cb(w ) = H (W )H*(w ) exp[ i(w w T Mt (g.4.2)1 v 2 v x r g

where H1 (W) and H2 (w) are the transfer functions of the

Butterworth filters at the two sites. The above equation is

simply an extension of Equation (B.l.5.a) with ISl(W )I, (the

response of the "flat" band pass filter), replaced by the

response of the Butterworth filters at the two sites. Because

we are currently assuming that Tg=pl we have absorbed the

phase delay rate into a time dependent delay (the group and

phase delay are assumed equal (for this current discussion),

hence the group delay rate will equal the phase delay rate).

The upper sign is for wv >0 and the lower sign is for Wv <0.

We can simplify the computations for this problem by

remembering that when the correlator accumulates the complex

cross correlation function, the rotations which are applied to

compensate for the phase delay rate have the correct sign for

Wv >0 only, for USB. (For LSB data, the correct sign for w <0v

is used.) Consequently, the spectral components from USB data

with w <0 will not increase in magnitude proportional to the

0v
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1
Figure '".4.3 Seven pole Butterworth filter power response
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number of bits correlated (N(q); see Table B.2.1), as the data

are accumulated. The USB spectral components with w <0 will

be rotated in the wrong direction. We will now investigate

the magnitude of these terms after the accumulation of the

complex cross correlation function. The accumulation of the

complex cross correlation function can be viewed as coherently

summing cross spectral components computed from 4 psec

segments of data (see Appendix A for discussion). Many of the

errors introduced into the estimates of the group delay, phase

delay rate and visibility phase by the approximations made in

developing the estimation algorithms, can be studied by ana-

lyzing the effects of these approximations on the phase of the

summed cross spectral components. We will now develop a

simple formula which allows us to estimate the magnitude of

the cross spectral phase errors due to the rotation of a cross

spectral component at an incorrect rate. The coherently

averaged cross spectrum was given by (Equation (A.15)):

a n(q) injq)a e i ( a a

q ap j2j

where (aa) is the a priori expected change in the crossap

spectral phase from the beginning of the accumulation period.

We may use the above formula to study the error in the

accumulation of the cross spectrum by replacing the summation

with an integration and replacing (aa) by the error in the
apj

rotation of the cross spectrum. These substitutions yield

T

AC(W) = A lac e+iAWet dt (B.4.3)

0e
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where AC(w) is the accumulated cross spectrum, A is the

amplitude of (assumed constant), Tac is duration of theamliud 2jfa

accumulation period and Awet is the error in the rotation of

the cross spectral components at time t (corresponding to

index j in the summation). (Awe will be used as a general term

to denote rotation rate errors. We will use it in several

different contexts in the remainder of this appendix.) The

magnitude of AC(w) will be

IAC(w)I - 2A sin 2 (AweTac/2 )/Awe (B.4.4)

We should notice that as Aw approaches zero, JAC(w)
e

approaches ATac as expected (i.e., if the cross spectral

components are rotated at the correct rate, then their

coherent sum will equal their algebraic sum.)

We now return to the problem of the USB spectral compo-

nents with w v<0. The error in the rotation of these cross

spectral components, expressed as a frequency, will be Awe -

2 w'(a)f (see Table B.2.1 for definitions). For a smallap q

phase delay rate of 100 psec/sec (this value will be exceeded

most of the time for baselines >10 km long), (wl'/2)=2 GHz,

and Tac= 2 sec (typical duration of an accumulation period),
aac

we have IAC(w)I/Ieq(w) - 8xi0-3 , where !a(w) is the
q q

corresponding USB cross spectral component with w >0. This
v

ratio is a direct measure of the expected phase error (in rad)

of the USB cross spectrum with wv>O, due to the USB cross

spectral components with w <0.

Although the phase error given above is very small (0?5),
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we will continue to analyze this problem because the analysis

* will provide us with some techniques which will be useful

* later in this appendix. So far, we have calculated the phase

error in a single accumulation period. But when the delay

* resolution function is computed, we will sum together many

* accumulation periods (see Equation (B.3.4). How do we compute

* the errors after this summation? There are two techniques we

could adopt. We could compute the phase errors in each

* accumulation period, at each cross spectral frequency, and

* then estimate, by least squares, the errors introduced by
4

these phase errors into the estimates of the multiband group

- delay, the singleband group delay, the phase delay rate and

* the visibility phase. (See Appendix A and earlier discussions

* in this appendix.) This technique is useful if we want to

correct the measurements for a known error (this technique was

* used in the initial study of the errors introduced by using

- only eight lags) . However, if we only wish to bound the

* effect of an error, this technique may be "too exact", i.e. it

* may involve more effort than is warranted for determining a

* bound on an error. We can adopt a simpler technique. To

* demonstrate the application of this technique, we show, in

Figure B.4.4, the aggregate cross spectral component,ACobs,

* (at a single frequency) , after several accumulation periods

- have been summed. This figure shows that the aggregate cross

spectrum will be
4

ACob~~ M A T obs e +iAw et dt (B.4.5)
0
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Figure B.4.4 Accumulation of cross spectral components as accumulation

periods are summed
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where Tobs is the duration of the observation. The magnitude

2of ACobs will be ICobs()l = 2A sin (Ae T obs/2)/Aw e. We can

now estimate that the magnitude of the USB spectral components

with wv<0, relative to the USB spectral components with v>0,

after a 100 sec observation, will be 50 times smaller than the

value quoted earlier. (IAC()I/Ia(w) t1-.6xl0-4 for (W'/2%)=2q

GHz and tap=100 psec/sec.)

To form the complex cross correlation function we there-

bfore only need to integrate Cu (Wy) from zero to infinity.

The procedures used to evaluate the errors introduced by

using only eight lags in conjunction with the seven pole

Butterworth filter were the same as discussed for the perfect

bandpass except that the complex cross correlation was

directly evaluated by numerically integrating, rather than

analytically integrating, the cross spectrum. When the

complex cross correlation function is directly evaluated it is

no longer necessary to average over a cycle of w rT g(t). To

see why this is so we need to return to the real (in the

complex sense) cross correlation function (Equations (B.4.1)).

The only difference between the calculations of the real and

the complex cross correlation functions is the limits of the

integration used in Fourier transforming the cross spectrum.

The real cross correlation function is obtained by integrating

the cross spectrum from -- to -, and represents the expecta-

tion of the cross correlation function of a short segment of

data (4 4sec duration) from the two sites. The complex cross

correlation function is obtained by integrating the cross
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spectrum from 0 to and represents the cross correlation

function obtained from the coherently averaged cross spectrum.

The phase term, wr g(t), appears in the cosine term in

Equation (B.4.1) and changes the shape of the correlation

function as Tr (t) varies (see Figure B.l.l.a). These changesg

in the shape of the cross correlation function will affect the

errors introduced by using only 8 lags (see insert in Figure

E.4.1 and accompanying explanation). The changes in w Mr(t)
rg9

will also affect the complex cross correlation function, but

in this case the shape of the correlation function will be

unchanged as T (t) changes. This constancy of sphape may be
g

easily seen by writing the expression for the complex cross

correlation function. Rc (A-ri) will be given byu

c gt) * iwv (t) iv (A. iRc(A e r g eltH v 1( v)H2((ve +ap dw
0

(B.4.6)

where we have included iap because the lag is taken about this

value, i.e. T = T ap+Ai (see Table B.2.1 and Section B.2).

We should notice that w Tr(t) appears outside of ther g
integration and hence will only rotate (in the complex plane),

the complex cross correlation function, and not change the

shape of this function. (If we replace the Butterworth filter

transfer functions in the above equation, with the transfer

function of a perfect bandpass filter (i.e., Hl(Wv)=l for

c
-B<w v<B and zero elsewhere) we see that R i) reduces to

R(A ) - e ir g(t)+igB(' (t)-AT1 - ap)
u

sinc(B[% (t)- - ap]) (B.4.7)
i:g i~p1

"I . . ." " " , " ": < " , .i. i ..: i .i . " - . . , . .. . .
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where sinc(a)=sin(a)/a. We see from the above equation that

R C(A .) is a sinc function rotated in the complex plane by

W r Tg(t)+nB(r (t)-Ai- Iap).

The cross spectral components which are generated from

the complex cross correlation function, evaluated at eight

lags, will only rotate as T (t) is varied by small amounts, of
g

order 2n/wr, i.e. each cross spectral component will be

multiplied by e'-ir g (t) independently of its video frequency

because e-ir g(t) can be taken outside of the calculation.

The amplitude and phase errors in the cross spectral

components will remain the same over these small variations in

g because the shape of the cross correlation function will

not change. (The shape of the correlation function will

change with variations in T of the order of 1/B).
g

The results obtained using the complex cross correlation

function should be exactly the same as those obtained from the

real cross correlation function after we have averaged over a

cycle of w r g(t).

In Figure B.4.5, the estimated errors in the relative

correlation amplitude, the singleband delay and the visibility

phase are shown for errors in the a priori delay that vary

from -0.6 Lsec to 0.8 Vsec. In addition we also show the

results obtained from the repeated correlations of a

Westford-Fort Davis, USB, S-band observation of the radio

source 3C 273B on July 7, 1982 at 02:34 UT. The experimental

and theoretical results match reasonably well although there

are some differences. (These differences will be discussed

! o-.. . *, , -. . - .% . ° . ... . . . . °.. ..... .°o ..-. . .,.
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Figure B.4.5 Comparison of the theorectical and observed errors introduced

by using eight lags
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after we have studied the multiband group delay results.)

For the geodetic applications of VLBI we are interested

in the multiband group delay errors. What magnitude errors do

we expect because of the use of 8 lags? We should expect zero

errors because the phase errors in each channel are indepen-

dent of the radio frequency. (The only term involving the

radio frequency is w (t). As we have just seen this termrg9

can be taken outside of the calculations (with the exception

of small fringe rate observations (see discussion associated

with Equation (B.4.3)), and hence does not affect the errors

introduced by using only eight lags.) In Figure B.4.6, we

present the variations in the estimates of the multiband group

delay results found from the repeated correlations. Clearly

the observed variations are not zero. Over the normal range

of ±0.1 Psec error in the a priori delay, the multiband delay

changed by 50 psec.

To investigate these observed multiband group delay

variations, we need to firstly look at the "performance" of

the correlator, i.e. had we repeated these correlations, not.

changing the a priori delay, what variations would we have

seen? The answer unfortunately is not zero, even though the

correlator is a digital system and hence should be able to

exactly reproduce results. The reproducibility problems seem

not to be with the correlator (in general) but with reading

the magnetic tapes. (In some cases, hardware problems do

develop in the correlator modules causing nonreproducibility

with a particular module with a hardware error. These cases

0. - ' ' = , : , , - " ' " - - ' , " . z + ' ' ' . " + " . . ' " " . ' . \ ' ' . $ ' ' ' ' ' ' . " . " +
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Figure B.4.6 Variations in the estimate of the multiband group delay as
a function of the a priori delay error- S band

60 *Observed multiband delay

One standard deviation variations
error bar (see text) (Note: the zero point is

arbitary)

40\ normal operating range

0

0\

-20

* ~~~-40 * a
-.6 -.4 -.2 0. .2 .4 .6 .8S I gtap

o,\

...................... ......... 4, . .** . .

-.. .. .. . .. . ...2..2 .. ....... .... ... .... ... .... ...



-356-

are rare and will not be discussed here.) To indicate the

magnitude of nonreproducibility (i.e., the differences between

measurements when tapes are recorrelated using the same a

priori parameters), we show in Figure (B.4.7), a histogram of

differences between the multiband group delays obtained from

repeated correlations of 21 observations of the radio source

pair 1038+52A and B (Marcaide, 1982). We have plotted the

histogram with bins defined by the difference in estimates in

the multiband group delay divided by their standard deviation.

(This form was chosen because earlier reproducibility results

had indicated that the nonreproducibility was a function of

the standard deviations of the estimates.)

If we now reexamine Figure B.4.6 and compare the results

with the possible variations in the multiband group delay with

repeated correlations (Figure B.4.7), we see that the varia-

tions in Figure B.4.6 can be explained by correlator non-

reproducibility. To further study this problem, the X band

results from these repeated correlations (at different lags)

were analyzed. These results are shown in Figure B.4.8.

Again we see variations in the multiband group delays which

are consistent with the nonreproducibility of the results.

Also the X-band variations show no correlation with the S-band

variations.

To confirm that the effects of errors in the a priori

delay are zero (or very small), we could repeat these tests

and average the results of the repeated correlations. To

reduce the pseudo-noise due to correlator nonreproducibility,

I
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Figure B.4.7 Histogram of the differences between the multiband group

delay estimates from repeated correlations

Obtained from pairs of correlations of the radio sources

1038+528A and 1038+528B, March, 1980.
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Figure B.4.8 Variations in the estimates of the multiband group delay as

a function of the a priori delay error - X band
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to 10 psec, would require at least 25 repeated correlations at

each of the 14 different values of the a priori delay. These

350 repeated correlations would be a large committment of

(limited) resources.

There may be a better approach. In May, 1983 a geodetic

experiment was carried out using the 100 m diameter antenna at

Effelsburg in the Federal Republic of Germany. The multiband

group delay estimates from baselines involving this antenna

can have standard deviations of a few picoseconds. We should

use these data to analyze the effects of errors in the a

priori delay. This analysis will not be possible before the

completion of this thesis.

The correlator nonreproducibility would also explain the

differences between the observed variations and the predicted

differences seen in Figure B.4.6. Again, the repeated

correlations of baselines involving the Effelsburg antenna

should confirm if this is the actual reason for these differ-

ences.

All of the results presented so far have assumed that

only USB data were available. We will now consider the

effects of using eight lags when only LSB data are available.

For the simplified case we are currently studying (see

earlier discussion), the lower sideband cross spectrum,

bC (wv), is given by (see Equation (B.l.5.b))

Cb(Wv) H (W ) H (wv ) exp[i(w Mr (t) ]  (B.4.8)

where the upper signs refer to wv>0 and the lower signs to
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Wv<0. We have written the cross spectrum in the same form as

in Equation (B.4.2). Only the negative video frequencies from

the LSB are used in the computation of the cross spectrum (see

discussion concerning Equations (B.3.1) and (B.3.2)), and in

the discussion on the complex cross correlation function

associated with Equation (B.4.2). A review of the discussion

associated with Figure 2.1.3. may also be useful at this time.

For w <0 the cross spectrum becomes

b

C( v) 1 ~v)H 'v~ CX ( ~ ~ I 1 r g

where we have explicitly shown the sign associated with wv by

using its absolute value in the exponent. We would form the

complex cross correlation function from this cross spectrum by

R (1W e r g H 1 (-1v)H*(- IWv) el v g
0

eilwvl(A1;i+'rap) dlwvl (B.4.9)

If we compare this equation with the equation for the upper

sideband complex cross correlation function (Equation B.4.6)),

we see that they are very similar (as we should expect) except

for some sign changes. To investigate the effects of these

sign changes, we will analytically evaluate Rt(ATi). To do

4 this we will replace the Butterworth filter responses with a

flat bandpass filter (this replacement will give us an

equation which we can directly compare with (Equation B.4.7)).

-

.............................................. ... ........ ...... ..... .......... ..... ............. ::::::::
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c

With the flat bandpass filter, RI (A.i) becomes,

RIATi ) = e r g (t)-iB(i(t)-ti- ap)

sinc[%B (Tg (t)-ATi p IV (B. 4.10)
S1 ap

In Figure B.4.9, we show a graphical comparison of R (A i) and

Ru.(), (Equation B.4.7). We should notice that the magni-

c ctudes of R (&T) and Ru(AT i as functions of A i are exactly

the same; the arguments, however, have opposite sign slopes

(as functions of AMi), intersecting AIi=O at

-w T (t)+%B( g(t)- a) and -w T (t)-%B( g(t)-a) , respective-r g g ap r g g ap

ly. (These intercepts may appear to have incorrect signs.

This change of sign occurs because the Fourier transform of

these correlation functions will generate the complex conju-

gates of the cross spectra (see discussion at the beginning of

this appendix).)

When the estimates of the cross spectrum are calculated

from the complex cross correlation functions, the contribution

of the cross correlation function at each lag, (rotated by

iW ATe v i), to the summation will be a constant rotation (inde-

pendent of the video frequency being computed, i.e.

-WrTg(t)-%B( g(t)-Tap), for USB, and -wr~g(t) +B( g(t)-rap),

for LSB), plus a rotation which will have opposite signs for

the upper and the lower sidebands ([fw V-BJAi and

-[IIwv-B]ATi, respectively). (Remember, only wv>O should be

used with Rc (Ari) and wv<O with RI(A~i).) Consequently, the

phase errors of the cross spectral components (i.e., the dif-

ference between cross spectrum phase at w and correct phase

..
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Figure B.4.9 Magnitude and argument of the upper and lower sideband
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at (given by wrg (t)+ (- (t)-'Ta)), from upper and lowerv r 9 vg ap

sidebands will have opposite signs (see Figure B.4.10).

Figure B.4.10 easily allows us to deduce, from the USB

results, the effects of using only eight lags, when only LSB

data are available. The singleband delay errors will be the

same for each sideband. The phase error at video DC, which is

the visibility phase error, will have opposite sign for upper

and lower sideband data. When USB and LSB data are combined

(in equal proportions), the visibility phase errors will be

zero (this may be seen from Figure B.4.10; the weighted least

squares fit of a slope and intercept through the cross

spectral phases from both side bands will intercept wv=O at

the correct visibilty phase). (Normally, the phase of the

cross spectrum of heterodyned signals, at the wv=O boundary,

is not continuous (i.e., the phase changes sign for real

signals); this discontinuity is not the case in Figure B.4.10

because this figure does not represent the pure cross spectrum

of a heterodyned signal (see discussion about Equation

(B.1.1)).)

It should be noted that if the a priori delay is in error

by more than 0.8 psec, then the correlation amplitude will

drop rapidly and the wrong peak in the delay resolution

function could be selected when estimating the multiband group

delay. If the wrong peak is selected then the visibility

phase and the estimates of the quantities will be useless.

At the beginning of this discussion we assumed that P
gZp

and that A$ (t)=0. If these two assumptions are removed, will

-'. . -" - . .. '* . -, . .* " . -.- "; .' . .-- . . . . .". .."- .".' " . ."" "' ' ' "



Figure B.4.10 Cross spectral phases from upper and lower sidebands
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our conclusions be changed? No. The only effect will be to

introduce an additional phase term to the exponent outside of

the integration used to compute the complex cross correlation

functions (see Equations (B.4.6) and (B.4.9)). Since these

additional terms are independent of A~i and wv' there presence

will not affect the calculation of the errors.

Before finishing with the effects of using only eight

lags we should stress that the estimated errors will only be

valid if the phase delay rate is sufficiently large that

W i At will rotate through several cycles during the observa-r p
tion (typically >100 seconds). For S-band data, the phase

delay rate would need to be greater than 100 psec/sec to

ensure 25 cycles of rotation of w f At, in which case ther p

visibility phase errors in Figure B.4.6 could be incorrect by

2.6 deg (see discussion on the complex cross correlation

function (Equation (B.4.5)).

The next error we will discuss is the use of the 3 level

sine/cosine function to carry out rotations (this function is

shown in Figure B.4.11). This problem can be viewed very -

elegantly from a Fourier series approach. If we refer back to

Equation (B.2.7) we see that the complex cross correlation

function Rc u(ATi) was given by, (see Table B.2 for symbols)
c N(q) 11 b

Ru (A'ri) =E xl(t +pAt s)x 2(t +(- ap ) p +p A t s - A i )

u 1 p=l pp sl

cexp[-iw' ( a )(t -t )Hap q p q

p - . , , - . . . . -. - - . . ' . . . . .. . .. - . . ; . . . - - - .. ,. - -.-.. ' ... .- .1
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If we group terms in this expression by setting

r(pAt sA ) = x (t1+pAts)X (t 1+(T ) +pAt -Ar.)
5 1 lq 82 q ap p s8

and f =w (I thenap ap q

N(q)
RC (Ari) = E r(pAt s,Ai)exp[-if appAt s] (B.4.11)
U 1 p=s

Equation (B.4.11) should be recognized as the discrete Fourier

series transform of r(pAt s Ai) at frequency f ap To deter-

mine the errors introduced by using the 3 level sine/cosine

function we can use the convolution theorom of Fourier trans-

forms (Bracewell, 1978, pp. 108-112). When the 3 level

sine/cosine is used to evaluate Equation (B.4.11), the results

obtained will be the product of the Fourier coefficient we

want and the Fourier transform of the 3 level sine/cosine

function. The 3 level sine/cosine function is periodic and

hence can be expanded in Fourier series. The first five

coefficients of the Fourier series for the 3 level sine/cosine

functions are

Harmonic coefficent frequency

1 (4/n)cos(1r/8) 1.18 fap

2 0 2 fap

3 -(4/3n) cos (3%/8) = -0.16 3fap

4 0 4 fap

5 (4/5n) cos (5%/8) = -0.10 5 fap

The first effect of using the 3 level sine/cosine function

. . . .. .. '-.'.'-" . " .- *- .. " . . .- I . " .- -. .. . ..' "
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will be to multiply the correlation amplitude by (4/%)cos(%/8)

(i.e., an increase of -18%). This increase in amplitude is

compensated after the summation (B.4.11) is completed by

dividing the magnitude of the singleband delay function

(Equation (B.3.3)) by (4/%)cos(%/8).

The increase in correlation amplitude is the major bias

introduced by the 3 level sine/cosine approximation provided

f is sufficiently large that the f pAts rotates through aap ap

large number of cycles during an observation. (See discussion

below.)

*For small fringe rates, the Fourier series coefficents of

the 3 level sine function will be different from the coef-

ficent of the 3 level cosine function if these functions have

not rotated through an integral number of cycles. The differ-

ence in the coefficents will introduce errors in both the

visibility phase and the correlation amplitude.

We can investigate the magnitude of these phase and

amplitude errors by calculating the difference between the

Fourier series coefficients of the 3 level sine and cosine

functions. After the 3 level sin/cosine has cycled through

Nsc cycles, i.e. integer value of fapTobs/(2n), where Tobs is

the duration of the observation, the maximum difference

between the sine and cosine Fourier series coefficients will

occur when fapTobs equals 2 %(Nsc+1/8), (see Figure B.4.12).

For this value of the argument of the 3 level sine/cos

function, the Fourier series coefficients will be

[(4Nsc+l)cos(n/8) - cos(n/4)J/[n(Nsc+l/8)] and

I

.**'. I'*~ 4 -
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[(4N sc+)cos(%/8) + sin(%/4)]/[%(N sc+/8)], for the 3 level

sine and 3 level cosine functions, respectively. The maximum

difference between the coefficients will be

[cos(%/8)- 2sin(n/ 4 )]/[%(Nsc+1/8)] = -0.16/(N +1/8). Thissc Sc

difference could lead to cross spectral phase errors of up to

08 (0.14 rads), and correlation amplitude errors of 14%. But

we also notice that the phase errors decay rapidly as fapTobs

increases. only on short baselines (<10 km length) will

fap Tobs be small for extended periods of time (more than one

observation). For a phase delay rate of 100 psec/sec, wr=2 .2

GHz, and Tobs =100 sec, the maximum cross spectral phase error

due to the 3 level sin/cos approximation will be 0.4.

The effects of the 3 level sine/cosine approximation on

the multiband group delays may be calculated from the above

results. The different fringe rates (i.e., fa), for eachap

channel in the synthesized band will lead to different phase

errors in each channel, and hence introduce multiband group

delay errors. For the case given above and a synthesized

bandwidth of 80 MHz (typical for S-band), the multiband group

delay error could reach 0.030 nsec (again, only for short

baselines will errors of this magnitude occur).

The third approximation we will study is the neglect of

the video rotation term. While deriving the complex cross

correlation function we neglected the term
tc

exp[-iw vjfp (tp- ), (see Equation (B.2.3)). This rotation

represents changes in the phases of cross spectral components

across the video frequency range due to the total phase delay

0



-371-

rate. Since w' (see Table B.2.1), is chosen at the center of

the video band, the phase errors due to the neglect of the

video rotation will be zero for the frequency at the center of

the video band. For the other frequencies in the cross

spectrum there will, however, be errors introduced by neglect-

ing the video rotation.

The effects of the neglect of the video rotation term

were studied by Whitney (1974) for the Mark I VLBI system. A

sufficiently large number of the characteristics of the Mark I

system are different in the Mark III system for the effects of

this video rotation term to be re-evaluated. The maximum

error due to this term occurs in the video frequency

components near the edges of the bandwidth. The bandwidth of

the recording system increased from 360 KHz to 2 MHz as we

changed from Mark I to Mark III. This increase in bandwidth

will increase the error in the phase of the cross spectral

components near the edges of the bandwidth by a factor of 5.6,

i.e. by the radio of bandwidths. The length of an

accumulation period has also been increased by a factor of 10,

i.e. the accumulation period has changed from 0.2 sec to 2

sec. The combination of these two changes has increased the

error due to the neglect of video rotation by a factor of 56

over the values given by Whitney. If we use a maximum value

for the phase delay rate of 2xO6sec/sec and an accumulation

period of 2 sec, the error accumulated at the edge of the

v ideo band (1 MHz from the center frequency) would be 4

cycles. This error is unacceptably large. Clearly the effect
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of the error due to video rotation must be reduced.

To reduce this error we must first realize that the

rotations applied to the data streams during correlation do

not exactly compensate for a change in the arrival times of

the signals at each site. Only the center frequency of the 2

MHz bandwidth has the correct rotation applied. The other

frequencies in the cross spectrum are rotated by an angle

which is error by (w -%B)i (tj-tc). One method we could use
v ap j- q

to solve this problem would be to accumulate a cross correla-

tion function for each of the video cross spectral frequencies

whose components are be estimated. This approach however

would require a sevenfold increase in the storage requirements

in the correlator modules and in FRNGE. An alternative

approach is to always keep the bit offset between the tapes

within ±0.5 of the bit spacing (0.25 Rsec). Each time a bit

shift is applied there should be a 900 phase shift applied to

compensate for the change in lag index. (See Equation

(B.4.7); a change in Tap by 0.25 Rsec will rotate Rc(AT i) by

0
%BAts, which equals 90 (see Table (B.2.1)). The rotation is

applied to compensate for this change. When we developed the

correlator algorithms (Equation (B.2.7)) we included a term

bfor changing the bit shift during correlation, ((,ra) ).) The

use of bit shifts does not eliminate the video rotation error.

The pattern of rotation errors of the cross spectral

component at video frequency, wv, is shown in Figure B.4.13.

Each discontinuity corresponds to a bit shift occurring,

accompanied by the 900 phase rotation. The accumulated error

°J t • .. . . . o • . . . . . . . . .. . . . . .. . - - - . . o •- *. . . - - - . . .
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of the cross spectral component at wv will be the average of

"saw tooth" phase errors shown in Figure B.4.13. This accumu-

lated phase error, A ac' will be given by

(+v-%B) - (W -B) f
A" acm1-1-# 1]A b / + [-v Af]tb/2 /T a4B 4B f

(B.4.12)

where A{1 and A*f are the rotation errors at the beginning and

the ends of the accumulation period, respectively, (see Figure

B.4.13), At 1 is the interval of time between the beginning of

the accumulation period and the first bit shift, and Atf is

the interval of time between the last bit shift and the end of

the accumulation period, B is the bandwidth and Tac is the

duration of an accumulation period (see Table B.2.1).

Equation (B.4.12) can be reduced to a simpler form by noting

that from At1 and Atbf , A 1 and A f can be calulcated. From

geometry, in Figure B.4.13, we have

1 (wv-.B)/(4B) (wv-B)Atl/(2BAtbs)

and

= + v b eib)r tsA~f =  (wv-nB)/(4B) +(v,B)Af(Bts

where Atbs is the interval of time between bit shifts (i.e.,

at bs= 1/(2tapB)). After some simple algebra, Equation

(B.4.12) reduces to

W -%CB

A4 v 1 f 1 f IT(B.4.13)
4B

The above equation may be simplified further by expressing
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1 f
Atb and Atb as functions of the fractional bit shift at the

center of the accumulation, FB, ( FB= hC/At -U N /At +.50),
ap s ap s

where c is the a priori delay at the center of the accumula-ap

tion period, Ats is the sampling interval and U U denotes the

largest integer smaller than the quantity inside the symbols),

and the "floating point" number of bit shifts in the

accumulation period, S, (S - (ap)q T ac/Ats ). (The actual

number of bit shifts in an accumulation period will be ISO).

From Figure B.4.13 we can deduce that

Atb = (S/2 - Nbl - FB + 0.5) Atbs (B.4.14.a)

and

Atf = (S/2 - N + FB + 0.5) Atbs (B.4.14.b)

where Nbl and Nb2 are the numbers of bit shifts before and

after the center of the accumulation period; Nbl + Nb2 I USO.

By adding and subtracting the two Equations (B.4.14), we

obtain

Atb- Atb- (Nb2 - Nbl - 2FB) Atbs

and
1 fAt b At-b (S N bl Nb2 + 1) Atbs.

Substitution of these results into Equation (B.4.13) yields

SAac [FB-(Nb2-Nbl)/2]S-(Nbl+Nb2)] Atbs/Tac
2B

(B.4.15)

Finally, we can eliminate Nbl and Nb2 from the above equation

o
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by noting that

(Nb2 -Nbl)/
2 = 0 , if ISO is even

= 1/2 , if NSE is odd and FB < 0

= -1/2, if ISO is odd and FB > 0.

We will denote (Nb2-Nbl)/ 2 by ab' which yields for the error

. due to the neglect of video rotation

ac = B [FB-hb][S-'SN)] Atbs/Tac ( B.4.16)

2B

In Figure B.4.14, we show the error in the phase of the

video DC cross spectral components which result from neglect-

ing the video rotation as a function of the time measured in

bit shifts, (one unit of bit shift time is Atbs). To generate

this figure we assumed that At b0, (see earlier discussion).

(The video DC frequency component is not computed from the

cross correlation function but the error at this frequency

will represent the visibility phase error after the singleband

delay has been estimated, see discussion on Equation (B.3.3).)

As with earlier errors, we see that this error will only

have a significant effect on observations with small phase

delay rates. For a phase delay of 100 psec/sec, the

visibility phase error, (i.e. the phase error, wv=0 ), could

be, after a 100 sec observation, as high as 22?5, (S=0.04 and

hence it is unlikely that there will be any bit shifts in the

observation). (We can extend the results from an accumulation

period to the observation duration using the same arguments

which were presented with Equations (B.4.3)-(B.4.5)). This is

a very large error and steps have now been taken to eliminate
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this error (see discussion later).

Dual sideband data will not be affected by this error,

when the sidebands are combined in equal proportions, because

the LSB error will have opposite sign to the USB error. (This

sign change may be shown using arguments similar to those used

when we were studying the effects of using eight lags; see

Equations (B.4.8)-(B.4.10).) If the proportions of upper and

lowe- sidebands are not equal, the error may be calculated

from the weighted mean of the upper and lower sideband errors

(see discussion associated with Equation (B.3.5)).

The multiband group delays will not be affected by this

error, unless there are data losses in the observation,

because the error does not depend on the RF frequency (see

Equation (B.4.16)). A 10% data loss in one channel may intro-

duce differences in the phase errors between channels of up to

2 , (assuming the data loss occurs only immediately after

every bit shifts, which is unlikely), and hence may introduce

errors in the multiband group delays. (This topic is explored

in further detail in Chapter 3.)

The video rotation term will introduce a bias into the

correlation amplitude. If the power spectral density of the

recorded signals is constant over the 2 MHz bandwidth, the

amplitude of the cross spectral components at frequencies

different from that of the center of the video band will be

reduced because of the incorrect phase rotation. The

amplitude reduction of a cross spectrum component with

frequency wv will be (if several bit shifts occur during the

. .. . . . . . . . . . . . . . . . ... . , . . . , .- - . . .. . .. - -
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h1

observation so that we can ignore the contributions from Atb

fand Atb (see Figure B.4.13 and the discussion associated with

Figure B.4.4),

f e- de 1/28 = 2 sin(Ss)/[(wv- B)Ats] (B.4.17)

video frequency components the reduction in amplitude will be

5.7%. The reduction in amplitude when the seven video fre-

quencies are averaged will be 2.5%. This bias may be cor-

rected by multiplying the observed correlation amplitude by

=1.026 . This type of correction is made in FRNGE but the

factor used is l/fl-n2 /288] =1.035. The correction applied in

FRNGE is the amplitude correction which would be applicable if

very closely spaced (<<0.25 MHz) frequencies in the video

cross spectrum were evaluated (Whitney, 1974, pp. 164-166,

i.e., Whitney integrated the bias over the video bandwidth

rather than averaging the biases for each of the frequencies

used).

After 10 August,1982, the error in total phase due to the

neglect of the video rotation was eliminated by applying a

(video) frequency dependent rotation correction, (Equation

(B.4.16)), to the video cross spectral components computed in

FRNGE.

We will now discuss the effects of the last approximation

listed at the beginning of this discussion: possible biases

caused by an error in the a priori phase delay rate. To

analyze this problem it is convenient to visualize the accumu-
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lation of the cross correlation function in terms of coher-

ently averaging the cross spectral components (this is the

"- method which we originally discussed in Appendix A). The

coherent average was formed by summing together the cross

spectral components from 4 Psec data segments. Each cross

spectral estimate was rotated by the expected change in the

phase of its components based on an a priori estimate of the

phase delay rate. Almost always the a priori phase delay rate

is known to within 10- 11 sec/sec and hence the error in the
o

rotation of the cross spectral components is bounded by 58

*over a 2 second accumulaton period at an observing frequency

of 8 GHz. This error is not so severe as it first appears

because the estimates of the cross spectral components are

referred to the epoch at the center of the accumulation

period. The phase error due to an error in the a priori phase

delay rate will be zero for this epoch if all of the data

recorded during the accumulation period are used in computing

the estimates of the cross spectral components. All of the

data recorded during an accumulation period may not be used to

estimate the cross spectrum, for example because of tape

reading errors during correlation. The error in the phase of

the coherently averaged cross spectrum due to data losses will

depend upon the times during the accumulation period at which

0data are lost. The worst possible error is 58 when only a

few bits of data from either the beginning or the end of the

accumulation period are used to compute the cross spectrum.

This error could be positive or negative depending upon

. , .. .. ...... ..... . .
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whether or not the segment is at the beginning or the end of

the accumulation period. In general, the error in the phase

of the cross spectral components could be positive or negative

depending upon whether or not data are lost primarily before

or after the temporal center of the accumulation period. A

systematic bias could develop in the phase errors if data were

lost systematically from before or after these center epochs.

If this systematic loss of data occurred, the error in the

phase delay would still be bounded by the product of the phase

delay rate error and the duration of the accumulation period

(for an error of i0- 11 sec/sec in the phase delay rate and an

accumulation period of 2 sec, the maximum error in the phase

delay would be 10 psec -0.3 cm). If the same systematic data

loss occurs in all frequency channels, then the maximum group

delay error would also be 10 psec.

To evaluate the effects of systematic data loss in only

one channel we can use the equivalence of the maximum likeli-

hood and weighted least squares estimators (see Appendix A).

There will be a compensating effect when only one channel

loses data; the greater the data loss, the greater the phase

error in that channel but the less weight this channel will

have in the estimation of the group delay. In Appendix A, we

saw that the weight given to the data from an accumulation

period is directly proportional to the number of data segments

used in evaluating the cross spectral components for that

accumulation period. In Figure B.4.15, we show the errors in

the estimated group delay which would result from systematic

..... .......... ......-...... ..-. - ... . ., . •- .- - .- ..- ,. .. ..-.. -
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Figure B.4.15 Errors in multiband groyy delay due to an error in the apriori

phase delay rate of 10- sec/sec
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data losses in all accumulation periods for a given channel

when the a priori phase delay rate is in error by101

sec/sec. These results are extreme for several reasons. We

have assumed the largest possible error in the cross spectral

phase for a given percentage loss of data, i.e. the data are

lost always from the beginning of the accumulation period,

every accumnulation period for a given channel was assumed to

lose exactly the same amount of data at the same location, and

the error in the a priori phase delay rate was extreme. More

typical errors in the phase delay rate are 10'-1 sec/sec. The

curves will scale linearly with phase delay rate error. in

practice if an accumulation period has discard rates of

greater than 10%, it is discarded totally and will produce no

error in the estimates of the group delays. The use of this

cutoff in the amount of data loss in an accumulation limits

the group delay error to 20 psec (=0.7 cm) even in the extreme

case studied.

The errors in the phase delays which resulted from these

same data loses were all less than 2% of the group delay

errors, i.e. <0.4 psec.

The use of upper and lower sideband data will not cancel

the errors given because for such errors to develop requires

loss of data. These data losses will, in general, be

different for upper and lower sidebands and hence the error

will not cancel.

We have now discussed some of the limitations of the Mark

InI processing software. There are other effects which could :
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be discussed which involve the equipment limitations, e.g. we

have already seen how the bandpass filter in the video con-

verters can affect the magnitude of an error. In Chapter 3 we

discuss some of the equipment limitations along with the

investigation of the quality of VLBI measurements.

b:4
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APPENDIX C. Correlations Between VLBI Observations.

" - When three or more radio telescopes simultaneously

observe the same radio source, redundant information is

obtained which can be used to check the quality of the

observations (i.e. for a baseline triplet, the sum of the

delays referred to a common epoch around the triplet should

ba zero if there is no contribution to the sum from the

brightness distribution of the radio source). In this

appendix, we will evaluate the magnitude of the correlation

between the VLBI measurements from each baseline when two

baselines have a common station and simultaneously observe

the same radio source. The estimated correlations can be

used for two purposes. Firstly, if the observations are

correlated then we should account for this correlation when

estimating geodetic parameters. Secondly, the correlation

should be accounted for when we are computing the estimated

uncertainty of the sum of the delays around a triplet of

baselines.

We will first investigate the relationship between the

cross spectra of the signals recorded at each site when

three stations simultaneously observe the same radio

source. The relationship between the cross spectra will

allow us to deduce the correlation between the phases of

the components of each cross spectrum. Then, using the

relationship between the maximization of the delay resolu-

tion function and a least squares approach, established in

v-.:.................................... .*-..".-..-. .'.-" ".." .% .-. . - ....- ."..- -..... ".- .'-'-" .- . - --..'- ,'. --p
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Appendix A, we will compute the correlation between the

observed values of the group delays, the phase delay rates

and the phase delays on two baselines which have a common

station.

Three radio telescopes are assumed to be observing the

same point radio source. At each station random signals

from the source and random noise from the receiver and

surroundings are being recorded. In the frequency domain,

the spectrum of the signals recorded at each site will be

=lW 1/7531 91 (w) + It-'i RIMw (C.1.a)

2 = 2 "2 (w) + /"4r- R2 ( ] (C.l.b)

X3 (w)= VTa 3 S3 ( + '/T-3 R3 (w) (C.l.c)

where /Ti SI1() ' / T 2 M2 (w and /!3 3 (w) are the spectra

of the signals from the radio source at the output of the

receiver; V NI(R)' /T R () and /li3 R (w) are the1 1 2 2 3 3(w r h

spectra of the random additive noise; and w is the angular

* frequency (see Appendix A for details).

In Appendix A, we found that the spectra of the

signals from the radio source are related by

2 = 1 (w)e- 1 2 (w) (C.2.a)

S3(w) - Sl(w)e 13 ( ' (C.2.b)

where t1 2 (w) and t 13(w) are the pairwise phase differences

between the spectra of the signals recorded at each of the

two pairs of sites. These phase differences account for

4

.4 2.. . . .*C.- 4'7i
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the difference in arrival times of the signals at each of

the sites. We can obtain estimates of these phase differ-

ences from the phases of the cross spectra of the data

recorded at each site. These estimates will differ from

the "true" phase differences due to the presence of the

random noise tI b11(w)'Ts
2 N2(w) and 3 ( )

The cross spectra of the data from the interferometers

formed by Sites 1 and 2 and Sites 1 and 3, 12 W)and

13" (
) are

and 12() j1 wMR 2 (w)
and

13(w) = 3

The expansion of these cross spectra in terms of the signal

and noise spectra is

S12 M)- Ta1Ta 2 S1S 1e 12 + VTa1Ts 2 S1N2

i -*- -i -*-
+ VTs Ta 2 N1 Se 12 + Ts 1Ts 2 N1N 2  (C.3.a)

*13(W) - VTa Ta e - i 13 + VTa Ts13 1 3 1 1 1 3 S1R3
+ (TSlTa 3 NIS e 13 + TslTs N N (C.3.b)

+ s1 T 3  1 1 1 3 1 3

where we have directly substituted Equations (C.2) into the

expressions for cross spectra. We have not shown the

frequency dependence on the right hand side of the equa-

tions.

The first term in each of Equations (C.3) is the

signal term. The remaining terms are noise terms. There

; , ,, _ _ , . . , ,, . .- - - . l~ H '.. - - .,-, . - - ..- : . -.- . -. . -. .. .- ---. :... ..-.- , . --
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will be a correlation between the cross spectra if they

have common noise terms. There is one common noise term

which arises from the product of the signal spectra and the

noise spectra at the common site (in this case Site 1).

The noise spectra at Site 1, Rl, also appears in another

term in each cross spectrum, /7sT NN 2 and /Ts1Ts3 R*R 3 ,

.. but these terms will not introduce any correlation because

they are independent. This independence is easily shown by

using the expansion of the products of four zero mean

* Gaussian variables (Davenport and Root, 1958):

I I)> = <92><Ri> + <1R d ><R2 9> + <R 1 ><F1 2>
1 1 'l2 1' 3 +"1 1 2 3 1 3 1 2>

where <> denotes expectation. The expectation of each of

the products in the expansion is zero (at least one pair in

each term is composed of independent factors), and thus

there will be no correlation between the cross spectra due

to these terms. By the same arguments, the terms

containing the signal and the noise at the remote sites

will not introduce any correlation between the cross

spectral estimates.

Of the three noise terms in the cross spectra of the

signals recorded at each site, only one is common to cross

spectra from the two baselines. The common terms from the

two baselines are STRa 1 e-'012 and /Ts_Ta

Seie-113. These two terms are deterministically related.

"". They differ in amplitude by /Ta2/Ta3 and in argument by

e-i12-013)  An interesting point and one which will be

very useful later, is that the angle between this common
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term and the signal part of the cross spectrum is the same

for both cross spectra. This angle is equal to the argument

of R 1.

At this stage we will group the two independent terms

in each cross spectrum in Equations (C.3) together which

yields
-S-i* Ta 2  Sa e-i-

12 1 T 2 1 1e 12 + VTs 1  2 1 1  12 +12

(C.4.a)

and
S -* i NS-+ 1

131) /TalTa 3 S1 Sle 13 + /Ts 1 Ta 3 * e 13 1
(C.4.b)

where

I =~.S +(Ts Ts N12 1/Ta TS2 S1N2  1 2 1 2

and

I Ta TS R+MST *

13 1 3 1N3 1 3 1 3

In Appendix A we saw that the individual estimates of

the cross spectral components are not used to directly

estimate the values of the VLBI observables. Coherent

averages of the cross spectral estimates are used. The

cross spectral components, Ca 2 (w), averaged over an

accumulation period, are computed from (see Appendix A,

Equation (A.15) for details)

a )nq). _i(a
M (WR Me apj12 lj (  2j ( )  aP

j-l

where ( ap) is an estimate of the change in phase between

the signal part of the cross spectral components at epoch j

.MN.

* - .' * * * *
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and the signal part at the first epoch in the accumulation

period; n(q) is the number of estimates of the cross

spectral components in the qth accumulation period.

If (a )j is sufficiently close to the actual changeap

in phase of the signal part of the cross spectrum, then the

signal part of the cross spectrum counter-rotated by (a)
apj

will have a constant phase and the magnitude of the sum of

these cross spectra will increase in proportion to the

number of segments summed. The noise component of the

cross spectrum will have randomly distributed phases and

* their sum will increase in proportion to the square root of

the number of segments summed. In Table CAl we summarize

the statistics of the terms in the cross spectra after n(q)

estimates of the cross spectral components have been

summed. Also in Table C.1 we define the symbols to be used

to denote the coherently summed cross-spectral components.

Figure (C.1) gives a graphical representation of the

components of the averaged cross spectra. We should note

that the definition of the averaged cross spectrum includes

0 the antenna and system temperatures. For this reason,

equations which contain the averaged cross-spectral

components do not explicitly contain these temperatures.

This approach was adopted to simplify the expressions for

L'.- the phase errors.

* By combining the statistics given in Table CAl with

the geometry of Figure (C.1) we may obtain estimates of the

statistics of the phase error of each averaged cross spec-
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Table C.l Statistics of the sum of n(g) cross spectral

component estimates

For baseline from Site k to Site m

Signal

<S' S' > = iTa Ta n(q)
km k m

Variance TakTam n2(q)/2

Independent noise

<Re(%m}> = <Im{T'}> =0

Variance (Re{I%)) Variance (Im{Im})

M (TakTsm + TSkTSm) n(q)

Correlated noise

<Re{N ei kmJ> <Im{* e-i km> 0
Vainc<Ref Vm (}(= =

Variance (Rek SIne- Okm}) Variance ( km{Rk*Sme-iOkm})

- Ta Ts k n(q)

where the summed cross spectral components are defined by

-S m =nq) *Sm )
_j e - i(a p ),

km' Ta (S S e ap Jk j=l ,m k m

n(q) i(a

k I (f1 ±k) e apj
" ~IkM - (km) e  a p

j3=l

_nfq) e(ap )~k* m Tk am (k m )

IC-1 j=l e )

4
- . *& . . .

-"- -'--. - *--.; . -*- . \*:.**.:.-- . - .. .* -: -:. . . -,-,. -.. , ...- -..-
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Figure CA Graphical representation of the components of the averaged-a -a

cross spectra Cl2(w) and C 3 (W)
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tral component. The phase errors for each baseline are

denoted in Figure (C.2) by E12 and £13. By treating

complex numbers as vectors in the complex plane and assum-

ing that the noise terms are small compared to the signal

term, we can write these phase errors as

£12 ; I 1 2 "e 1 2 + (N1 2 e-i*12)' 1 2 1/( * ' 2I (C.5.a)

and

13 e + (Nj Se' 13) J (C.5.b)

where 12 and A are unit vectors perpendicular to the

signal vector (see Figure (C.2)); *i2 and 03 are the cross

spectral phases for the central accumulation period. These

phases account for the errors on the a priori models for

the total phase and the phase-delay rate, i.e. the phase of

the averaged cross spectral components will not be zero, in

general, even when there is no noise present because of

errors in the a priori models which are used to compute

* - (a).
ap j"

The variances of £12 and £13 may now be calculated

from Equation (C.5) and the statistics given in Table C.l.

The variances will be given by

<£22> = (TslTs 2 + TalTS2 + Ta2 Tsl)/(TaTa2n(q))

and

<£23> = (TsTs3 + Ta1Ts 3 + Ta3Ts1)/(Ta 1 Ta3n(q))

These expressions for the variances may be simplified

by realizing that for most geodetic experiments, the

,, -. ". .. "..... ....... . ." . " . .... "..... *. .. ,,',.'' '','. ,,i ,- .--. ,.'
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antenna temperatures are much less than the system

temperatures. If we assume that the product of the antenna

and system temperatures is much less than the product of

the system temperatures, the expressions for the variances

reduce to

<12 > TsTs2/(TalTa 2 n(q)) (C.6.a)
and 1~ 2/

and <123 > Ts TS3/(TalTa 3 n(q)) (C.6.b)

The final expression we will need before computing the

correlation between the errors in the estimates of the

phase of the cross-spectral component is the covariance

between the phase errors, <c12 C13> This covariance will

be given by

< 12 13>-

<i12"e 12 Ti3 e1 3> + <(i~jBe- 1 2"21 cRl i3e  1 3 )>

I-j 1i Isj* ' 1

The expectation of the product of the independent noise

terms is zero. (This result was shown earlier in this

Appendix.) The expectation of the second term can be

evaluated by noting that the angles between 1' -e -  12 and1'2

2 and N'i Sle-13 and & are identically equal. We will12 1313
0 denote this angular difference with the symbol 4, (see

Figure (C.2)). This equality allows the expectation of the

product of the correlated noise terms to be reduced to

<(rj* 'e i  l2"12) ( 1*93'e- 13°813)> -

.- <Re{ --*- lei -Re{ Ifl *9 lei.}>
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which may be evaluated using the statistics given in Table

C.1. The covariance between the phase errors will be
ri

<C E2 13> = Tsl/ [Taln(q)] (C.7)

The combination of Equations (C.6) and (C.7) allows the

correlation between the errors in the estimates of the

phases of the cross-spectral components to be evaluated.

This correlation will be

= 3 = /Ta2Ta3/Ts2 Ts3  (C.8)

Equation (C.8) gives the correlation between the phase

errors of the summed cross spectral components for a single

accumulation period. The equivalence of maximizing the

delay resolution function and least squares can now be used

to determine the correlation between the errors in the

multiband group delay, phase-delay rate and phase delay

estimates for the pair of baselines.

We will estimate these correlations using a general

approach. If we treat the estimation of the values of the

VLBI observables as a least squares problem, we can express

the group delay, phase-delay rate and phase delay as a

linear combination of the phases of the cross-spectral

components from each accumulation period. We may write

these relationships for each baseline as

012 = aj(12) j (C.9.a)

4 J

4'. . .. . ..: .. . ... . .. ... f , . , . , , , , ., ., ,
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and

013 : aj(013)j (C.9.b)
)

where PI2 and PI3 are estimated values of the VLBI observ-

ables (i.e. multiband group delay or phase delay or phase

:-'. - delay rate), a. are the linear coefficients which relate

the coherently averaged cross-spectral phases to the param-

eter of interest, and (012) and (013)j are cross-spectral

phases from each accumulation period on each of the base-

lines. The summation will be over all accumulation

periods.

The form of Equations (C.9) implies that exactly the

same linear relationship is used to determine the values of

the observables from the cross-spectral phases from each

baseline. This is not exactly correct because some accum-

ulation periods may not be used to estimate @12 and 013 on

either one or both of the baselines due to tape reading

errors. We will investigate the effects of this possibil-

ity shortly.

Equations (C.9) may be used to determine the correla-

tion between the errors in the estimates of @12 and

,. .~This correlation will be given by

!>//<c2

P12 P13 12  p1 3

which reduces to

2 2

where we have assumed that the expectation of the product

0 .

.°....................°.~ 
.........
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terms from different accumulation periods is zero. (This

assumption is consistent with the statistical assumptions

made in Chapter 2 for the properties of the signal and

noise recorded at each site.) If we assume that the

expectations of the phase error products are independent of

j, Equation (C.10) reduces to

Pp =~ <E >/<2 >2

p 12 13 1,£2 <13> C

Therefore, the correlations between the errors in the

estimates of the group delays for a pair of baselines with

a common station will be

P V~a2 a3 /Ts 2Ts3  (.1

Similarly, the correlations between the errors in the

estimates of the phase-delay rates and the phase delays

from each baseline will be given by the same expression.

If the set of accumulation periods used to estimate

the values of the observables is different for each of the

baselines the correlation given by Equation (C.11) will be

reduced. When some accumulation periods are not used the

variance of the estimated parameter will increase while the

covariance E<£) (l)>) will decrease because there

are less terms in the summation. Hence, Equation (C.11)

places an upper bound on the correlation.

Before completing this appendix we will evaluate the

effects of the correlation on the estimated standard devia-

tion of a baseline triplet closure uncertainty. We will

*. .. . . . . -.. . . . . . . . . . . . ,.. . . .. . . . . . . . . ... .
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consider a simple case for which the antenna and system

temperatures are the same for each station in the triplet

and exactly the same accumulation periods are used for each

observation. For this case it can be easily shown that the

variance of the closure quantity (group delay, phase-delay

rate or phase delay) will be over-estimated by six times

the covariance of the baseline quantity if the correlation

between baseline quantities is not taken into account.

(The variance of the sum of the delays around the triplet

2 2will be c <(E 2 3+C 3 1  >

<E 2 >+<2 2>+<2 >+2<E E2>+2<E23c3>+2<cIE3>. For the
1 31 31 12 23 22 3 31  12 31> o h

case given the expectations of the cross terms would be
2 2 2 2 +6< C3>.)

equal and therefore a = 12+031312 23

TYpically values of the correlation between the errors

in the values of the VLBI observables are less than 0.01,

i.e. typically vTa 2Ta 3/Ts 2Ts 3 is less than 0.01. The above

result would indicate that neglecting correlations while

computing closure statistics would introduce errors in

these statistics of less than 1%.

The correlations between errors in the group delay,

phase delay and phase delay rate estimates can be easily

accounted for when closure statistics are computed. At

this time, accounting for these correlations in the

weighted least squares solutions for geodetic parameters

does not seem warranted given the uncertainty in the appro-

priate statistics for the group delay and phase-delay rate

measurements used in these weighted least squares solu-

-. - --I. - , . -, , .. . . .. • - . ,, , . . , , . . .,. - , . .., , . , . , .. . . , -.
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tions. If antenna and system temperatures improve

considerably (such that correlations of 10% are likely) , it

may appear that the correlation between measurements

discussed in this appendix could become important.

However, if this situation were to arise, the baseline

length measurements would be so accurate (standard

deviations of severval microns, probably) , that we could

still neglect the correlations. [Remember, that for the

correlations, due to random noise, to be important, all

other noise sources in the analysis must be small compared

to this random noise. With the current receivers and

antennas, the standard deviations of baseline length deter-

minations would be a few millimeters, if these determina-

tions were signal-to-noise ratio limited. (This is with

less than 1% correlations between measurements.) If the

sytem temperatures were to improve tenfold, then baseline

lengths could be measured with submillimeter accuracy

(again if the analysis were random noise limited).

However, with these improvements in system temperatures, we

could use the group-delay measurements to predict the phase

delay ambiguities, thus decreasing the standard deviations

of the baseline length estimates by 40 fold (to the tens of

4 microns level) . If the analysis was still signal-to-noise

ratio limited at this stage, the correlations could be

important. Of course, it is very unlikely we will ever

reach this stage.]
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* Appendix D. Feed rotation correction

In this appendix we will develop the algorithms for

* correcting the visibility phases for the effects of feed horn

rotation. At first glance it is not obvious why the orienta-

* tion of the feed horn should affect these phases. Externally,

* feed horns appear to be very symmetrical i.e., usually conical

in shape. However, at the base of all feed horns there is a

* crossed dipole or an equivalent component. We will first show

why the correction is necessary by considering the output of a

pair of crossed dipole antennas in the presence of a propaga-

* ting plane wave. We will then develop the algorithms for an

* antenna located on a rotating earth.

The electric field E of a monochromatic circularly polar-

ized plane wave at position iand time t is given by (Jackson,

* 1975, pp. 273-278)

E(x,t) =E (C^ +i^E e~ t
0 1 2~

* where Eis the amplitude of the wave (volts/n), Zl and A2 are

orthogonal unit vectors (see Figure D.1) , R is the wave vector

of the wave (directed in the direction of propagation) and w

isrthe frequency (radians/sec) of the wave. The upper sign is

fo right circularly polarized (RCP) radiation (IEEE defini-

toi.e. for an observer looking in the direction of propa-

gation, the E field vector at a fixed location appears to

rotate clockwise); the lower sign is for left circularly

polarization (L.CP). (The use of complex numbers to represent
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Figure D.1 Geometry of dipole and field unit vectors
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the electric field is a mathematical convenience. The actual

field quantities can be obtained from the complex field

quantities by taking their real part.)

To detect this wave we need a method for converting the

spatially propagating wave into a guided wave propagating

along a transmission line. A simple method to detect the

propagating wave is to use a dipole antenna. The voltage

difference between the terminals of the dipole, when the

dipole is oriented in direction dl, will be (see Figure D.1)

V1 (t) = Re{icE odI (e1 ±it 2 ) R dWol

where K is a constant (with units of length) which will be a

function of the dimensions of the dipole, the conductivity of

the dipole and the shape of the E field in the region around

the dipole antenna; and xd is the position of the center of

the dipole. (The fields in the region close to the dipole can

not be plane, in general, because the tangential components of

the electric field must be zero on the surface of the (per-

fectly conducting) dipole. For this discussion we do not need

to know the exact functional relationship between these

quantities and i.) The above equation expresses that the

component of the electric field parallel to the dipole is

measured. (The equation is strictly valid only for dipoles

whose length is small compared to the wavelength of the radi-

ation (such that the dipole will not disturb the electric

field away from its surface. In practice, dipoles can have

lengths comparable to the wavelengths of the radiation

*, '-~ -". " . -' "-"-"." " ** . " ' ***"- " . "99 . . . "-.9 .... .• -. " ". - - -"9. " .- " 9- - "
i m, ,. .. , ;,. 9 9 .- 9 9 *.9.-.-. , .... ...9 .9.. .. .. , .. , ....
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(Jackson, 1975, pp. 273-278) .)

In order to detect only one circular polarization the

output of a second dipole, d2 , which is orthogonal to dl, is
20

added to the output of d1 with a 90 ° phase shift (Figure

D.1). If only RCP is desired, the signal from d 2 is rotated
02

by -90 , and added to the signal from d1 . Hence, the summed

output will be

V(t) = Re{<EOld - (£i±i 2 )-id 2 (F ii 2 )]e d I (D.1)

which reduces to

a i (T.x- wt)
V(t) = Re{coE dI (l+i 2 )e d- } (D.2.a)

when E(x,t) = Eo( 1 +iE 2 )e ,i.e. for RCP radiation,

and

V(t) = 0 (D.2.b)

when E(x,t) = E 0 ( 1 -i 2 )e i (t) ,i.e. for LCP radiation.

We may further simplify Equation (D.2.a) by substituting

.. +i ":e d dI - (E 1+iE 2 )

where 4), the feed position (or parrallatic) angle, by

definition equals tan-(d.f 2/d1 . 1 ). With this substitution,

Equation (D.2.a) becomes

V(t) = Re{,Eoei(*Xd+4 -wt)} . (D.3.a)

When the signal from d2 is added to the signal from d with a

0
+90 phase shift and LCP radiation is observed, the output of
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the crossed dipoles will be

V(t) = Re{KoE e i (koxd - ' -Wt)} (D.3.b)

The sense of angle 4' is shown in Figure D.l. Equations (D.3)

clearly indicate that the phase of V(t) is not only a function

of the separation of the source and the dipole, but also a

function of the orientation of the dipole.

We will now investigate a method for correcting the

visibility phase for the effects of feed rotation. To be able

to calculate the feed position angle 4' we need to express d

and I in a common coordinate system. As with most problems

the ease of finding a solution is a function of choosing an

appropriate coordinate system and set of unit vectors. We

will choose the C^ vector such that it lies in the plane
1

containing the rotation axis of the earth and the radio

source, and is pointed north (Figure D.2). (By definition, Zi

is orthogonal to R and hence its orientation is uniquely

determined except for sources at the pole.) For sources at

the pole we can define C to point in any well defined

direction, e.g. toward the equinox of date. We discuss this

special case after we have formulated the general case.)

The dI vector will be defined such that it lies in the

plane containing the primary axis of the telescope and the

source. The primary axis of a telescope is the axis whose

direction always remains fixed with respect to a local (earth

fixed) coordinate system. (For azimuth/elevation (az/el)

mounts, this axis is in the direction of the local vertical,
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Figure D.2 Definitions of the dipole and field unit vectors
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and for equatorial mounts this axis is parallel to the

rotation axis of the earth, if the telescope is located at the

latitude for which it was designed.) The orientation of dI is

uniquely defined, to within a sign, by making it orthogonal to

the direction in which the telescope is pointing (assumed to

be in the direction of the radio source), (Figure D.2). (The

definition of d1 degenerates for az/el telescopes when the

radio source is at zenith. In this case, the feed rotation

correction cannot be calculated because the radio telescope

can be pointed in any azimuth and still observe the radio

source. In practice, this situation does not occur because

the antenna pointing programs also fail in this situation. In

all Mark III experiments that we will be analyzing there are

0
no observations within 2 of zenith at az/el telescopes. (The

Mark III scheduling program, SKED, will not allow observations

to be scheduled at az/el telescopes within this limit.)

We have now defined a convenient set of unit vectors, but

in different coordinate systems. To find the relationship

between the unit vectors we may project them onto the

celestial sphere. In Figure (D.3) we show such a projection

of the unit vectors Fi and dI . The unit vector E lies in the

plane of the rotation axis of the earth and the radio source,

and will project onto the great circle connecting the source

and the pole of the rotation axis of the earth. The unit

vector d1 lies in the plane of the principal axis of the

telescope and the source, and will project onto the great

circle between the source and the pole of the principal axis
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Figure D.3 Projection of the source and feed horn unit vectors onto
the celestial sphere

rotatin axis of

the Earth

Equinox GS+

of date

equator

Celestial sphere

Legend

T is the extension onto the celestial sphere of the line from the center of

the earth to the radio telescope

S is the position of the radio source on the celestial sphere

P is the extension of the Earth's north pole onto the celestial sphere

A is the extension of the radio telescope's principal axis onto the celestial

sphere

X are the longitude and latitude of the radio telescope

a ,6 are the right asc-,nsion and declination, of date, of the radio source
s 5

CST is apparent Greenwich sidereal time

4 A is the local hour angle or the radio source IHA-GST+X.,-s l )

Sa  is the zenith angle of the primary axis of the radio telescope

2a  is the zenith distance of the radio source

*. is the feed position angle

' - ;.~~~~~~~~~~~~~~ %,.. ,. %.... ,.. . . .. ,. ,,......... . .. ,. . :.;::).
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of the telescope. Figure (D.3) has been drawn for the case

when the principal axis of the telescope lies in the north-

south plane at the site and is inclined by angle ea with

respect to zenith. If the telescope is an azimith/elevation

mount, then 6 =0. If the telescope is an equatorial mount,
a

then 0 a= n/2- r' where *r is the latitude of the radio

telescope. The case drawn corresponds to an equatorial mount

that has been moved from the latitude for which it was

designed. This situation will apply to the Richmond, Florida,

antenna which will form part of the POLARIS (POLar motion

Analysis by Radio Interferometry Surveying) network (Carter,

1979). (The primary axis of the Richmond antenna will be

placed in the local meridian (Robertson, 1982; private

communication), and we have drawn Figure D.3 assuming that

this will be the case.)

The feed angle 4 can be easily computed from the

spherical triangle PAS (see Figure D.3). The angle between

the projection of the principal axis of the telescope and the

source may be computed using the law of cosines for spherical

triangles. Application of this law yields

cos(Za) = sin(r + a)sin6s + cos(r +a)cos 6 scosHA (D.4)

where the angles are defined in Figure (D.3). We could

determine c using the law of sines but care would be needed in

resolving the correct quadrant of the inverse sine. (This

approach was adopted by Knight, 1981, Appendix 3, although the

logic used to derive the correction was somewhat different

from that presented in this appendix.) The quadrant problem
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can be resolved by using the half angle formula (see, for

example, Breyer, 1978; pp. 175-178). Thus,

sin(s-n/2+ 6 jsin(s-za ) 1/2
tan(('/2) = sign(HA)[ a (D.5)

sin(s-n/2+ r+0 a )sin(s)

where sign(HA) is the sign of the hour angle expressed as an

angle between -n and n (the positive value of the square root

should be taken), and s is half the sum of the sides of the

spherical triangle PAS, i.e., s = ((%/2-(r + a)) + (n/2-6 ) +

z )/2. Application of Equation (D.5) leads to a unique
a

determination of 4.

When e =(i/2)- s, the principal axis of the telescope isa

parallel to the rotation axis of the earth, i.e. A and P in
Figure D.3 will coincide. In this case za will equal (n/2)-6 s

and s will reduce to (%/2)-6 s . Substitution of these values

into Equation (D.5) shows 4 will be zero for all observations.

We may now write down the algorithm for the correction

for feed rotation. The visibilty phase is the phase of the

signal at Site 2 minus the phase at Site 1 at the same epoch

(see Chapter 2 for discussion). From Equation (D.3.a) we

deduce this difference in phase, st' for RCP (the polarization

used in the Mark III experiments that we will be studying):

t= ( 'x2+42) - (J 1+4l)

where x2 and xl are the coordinates of the dipole at Sites 2

and 1, respectively, and and 4i are the corresponding feed

angles at each site. The visibility phase corrected for feed
c

rotation t will be

t "x2 1
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which can be generated from the observed visibility phase by

subtracting the appropriate combinations of feed angles. For

RCP, we have
c

t = t - ((2-(l) " (D.6.a)

For LCP, the correction is

= t + (2-'I) " (D.6.b)

We should note that c1 is independent of frequency and hence no

corr-2ction need be applied to the group delays.

In Figure D.4 we plot the feed rotation correction, for

an interferometer with one element being a telescope at 450

latitude, with an az/el mount, and the other, a telescope with

an equatorial mount, at an arbitrary location. The correction

is plotted as a function of the hour angle of the source at

the az/el telescope. The maximum observing time at the az/el

telescope has been plotted for the source at different

declinations, i.e. the limits on mutual visibility of the

source from the two sites were ignored.

In Figure D.4 we see one discontinuity in the correction

0
(for 6s=45 , and zero hour angle). This discontinuity occurs

as the source passes through zenith at the az/el telescope.

When the source is at zenith, the radio telescope can be

pointed in any azimuth and still observe the radio source.

The feed rotation correction can have any value between ±1800

depending on the azimuth of the telescope. In practice, this

situation does not occur (see earlier discussion on the

definition of d).

We mentioned earlier in this appendix the degeneracy of

e
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Figure D.4 Feed rotation correction to the visibility phase for an

interferometer formed by two telescopes, one at 450 latitude with
an az/el mount and the other with an equatorial mount at an

-12 arbitary location.
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our definition of the direction of f when 6s=n/2. We may now

study this case in more detail. If we substitute 6 =n/2 intoS

Equation (D.4) we see that za = %/2-(r +0 a ) and hence s =

n/ 2 -( r+0a). If we now attempt to use Equation (D.5), we see

that the equation is inderterminate, i.e. both s-z anda

s-n!/2 +0r+6a equal zero when 65s=/
2 . We could determine the

value of Equation (D.5) by finding the limit of

sinl-Za )sin(s-r/2+Or+0 a ) as 6s*/2. However, a simpler

approach is to use the law of sines to determine $. Thus,

sint, = sin(HA)cos(r +0 a)/sin(z a).

When 65s=/2, the law of sines yields sind' - sin(HA) and hence

4, = HAtnn, where any integral value of n (including zero) will

satisfy sin , = sin(HA). The solution consistent with Equation

(D.5) is 4 = HA±n. When the law of sines is used to solve the

problem there does not appear to be any singularity, but CI is

undefined for sources at the pole. What happened? The answer

is quite simple, for sources at the pole, the hour angle is

undefined because the source may have any right ascension (see

Figure D.3). We may arbitarily define the right ascension of

the source and hence implicitly define the direction of i"

(If the right ascension is taken to be zero, Ci will be

directed toward the equinox of date. This may be shown by

0
considering the limit of the geometry in Figure D.3 as

6 5 -/2.) Since the correction to the interferometer visibil-

ity phase is the difference between the feed position angles

at each site in the interferometer, any constant change in the

feed position angle will cancel in the difference, except when
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one element in the interferometer is an equatorial mount. For

equatorial mounts (at their design latitudes) , we saw that the

feed position angle was zero (see earlier discussion). This

statement is not correct if 8 5ir/2, because in this case the

radio telescope can be pointed at any right ascension and

still observe the source. For reasons similar to those

discussed for az/el telescopes pointing at zenith, this situ-

ation does not arise in practice and hence the singul.. ties

in the definitions of unit vectors and should cause no

problems in practice.

* There are several assumptions in the formulation present-

ed in this appendix which are not strictly valid. We assumed

that the ~lunit vector was fixed with respect to inertial

space by defining its orientation as fixed with respect to the

rotation axis of the earth. However, the rotation axis of the

earth precesses and nutates in inertial space. In 13,000

years (half of the precession period) the error introduced by

* - the motion of the rotation axis in inertial space will reach

0its maximum value of -46 *For the next several decades we

4can safely ignore this error, Similarly, the unit vectord1

was referred to the rotation axis of the earth which moves

with respect to the crust of the earth. The motion of the

rotation axis with respect to the crust of the earth will also

introduce some error in the formulation. Both of these

motions of the rotation axis will introduce errors of less

4than 1l0 in the corrections to the visibilty phases within the

next several decades, with the major error contribution coming
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from the precession of the rotation axis in inertial space.

If errors of this magnitude do become a problem, the formu-

lation of the feed rotation correction can be updated to

include the effects of precession and nutation.

:.7

07

%-°.
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Appendix E. Review of weighted least squares

In this appendix we review the weighted least squares

estimation technique. We will not derive the basic least

squares algorithm because this derivation can be found in

nearly all books on estimation theory. We will instead

concentrate on extensions of the basic formulation which allow

large numbers of parameters to be estimated, and correlations

to be accounted for (without the direct inversion of large

matrices). We will also study some methods of interpreting

the results of a least squares analysis.

The basic estimation problem which we wish to solve is,

given n observations , with expectations y, and noise contri-

butions, e, such that y = +c, (we will discuss the nature of

r shortly), we wish to estimate the values of m parameters, x.

These parameters are related to the observables by a mathe-

matical model y = f(x). In general, f(x) will be non-linear

functions and we will first linearize the estimation problem

by using a Taylor's series expansion of f(x) about a priori

values of the parameters, x 0-o

With the first order Taylor's series expansion, the model

becomes

S o ) (f/x) Ax (E.1)

We can compress the above equation by defining the "pre-fit"

residuals t = -f(xo) and the partials matrix A = f/x,

"0
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which yields,

A = AAx + _e (E.2)

For any choice of Ax, A!, we can calculate the "post-fit"

residuals, v, given by

v= Aj - AA . (E.3)

If we know the statistical properties of _, i.e. through a

variance-covariance matrix, or simply covariance matrix, V =

<ECT>, then the weighted least squares estimator is defined by

the estimates of Ax which minimize vT Vv. It may be easily
CC-

shown that the weighted least squares estimate of the para-

meter corrections, AR, is given by (see, e.g., Kaula, 1966,

Chapter 5),

Ax= (AT vEA)-1 ATV -' .VE (E.4)

In the remainder of this appendix, it will be convenient to

write Equation (E.4) in two different forms. The first form

uses the concept of generalized matrix inverses (see, e.g.,

Bjerhammar, 1973, Chapter 9; and Bjerhammer, 1975), and

Equation (E.4) is written as

A = A-AY- (E.5.a)

where A is the generalized inverse of A. (The generalized

inverse of a matrix is defined by A = AA A. We should notice

that if A is a non-singular square matrix, the generalized

inverse is the usual inverse of matrix A). We should note

that Equation (E.5.a) is a general form which will admit all

linear estimators. The weighted least squares estimator is

6e

. . . . . . .
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just one form of the (non-unique) generalized inverse. We

will discuss the interpretation of A- in Section 3.1.

The second form in which we will write Equation (E.4) is

its computational form. We introduce the normal equations, N

ATV-IA, and a vector 2 = ATV-!A. Equation (E.4) then
£E C C E

reduces to

* -1.
A =N-I . (E.5.b)

Equations (E.5.a) and (E.5.b) look similar but the sizes

of the matrices in these equations are very different, e.g.,

if we have 1000 observations, and 100 parameters to be esti-

mated, A is a 100xlOO0 matrix, (requiring 390 kbytes of

storage), whereas N - is a 100xlOO (symmetric) matrix requir-

ing only 20 kbytes of storage. Computationally, Equation

(E.5.b) is much easier to implement than Equation (E.5.a).

The advantages of Equation (E.5.a) will be discussed shortly.

We now return to the investigation of the differences

between the pre-fit, Z, and post-fit residuals, v. If we

substitute Equation (E.5.a) into Equation (E.3), and use

Equation (E.2) to eliminate 67 from the resulting equation, we

obtain

v = (I-AA ) . (E.6)

This equation gives us a relationship between the pre-fit and

post-fit residuals. It also allows us to compute, for an

error Z in the observations (e.g., due to inadequate models or

instrumental errors), the form of the post-fit residuals.

When the form of t is known, Equation (E.6) provides a con-

* ' .' ' . ' -. . . .. ., ' ' " . ". ' ' ... ' ..' " " " ' j ' i ., , '
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*venient means of detecting E in the post-fit residuals.

It would appear from Equation (E.6) that we could esti-

mate the errors in the observations by

= (I-AA) - v . (E.7)

Unfortunately, the matrix I-AA is singular and hence does not

have a unique inverse. The solutions of Equation (E.7) are of

the form

= v + A6x

where 6x are arbitrary corrections to the parameters. It is

interesting to note that if we can bound Z, then we could

bound 6x, and hence place an upper bound on the effects of

systematic errors.

We can estimate from Equation (E.6) the covariance matrix

of the post-fit residuals, Vvv,

T -TVvv = <vv > = (I-AA) V E(I-AA-) (E.8)

which after some matrix manipulation reduces to

-l TVvv = (I-AN A ) V. (E.9)

Ideally the matrix AN- AT should have all small elements, so

that the post-fit residuals have statistics which are similar

to those of Z, but this will not always be the case. For

-1 T
large numbers of observations, I-AN A is a very large matrix

and we currently have no software which will compute this

whole matrix. (For 1000 observations, I-AN-AT would require

nearly 2 Mbytes of storage.)

It should also be noted from Equation (E.9) that, in

4,i
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general, the off diagonal elements in I-AN-lAT will be non-

zero and hence correlations between the post-fit residuals do

not necessarily mean that the observation noise was correlated

(see, e.g., Section 3.1 for discussion of correlations among

residual phases).

The estimation technique we have just discussed uses a

parameterization of the observables. There is another formu-

lation of estimation problems which is normally not discussed

in estimation texts because it is usually difficult to apply.

This technique is estimation by conditions. If m observables

are functions of n parameters, then there must by m-n condi-

tions which can be imposed on the observations, e.g., if

height differences between points are measured around closed

loops, then the conditions would be that the sum of height

differences between points around each closed loop should

equal zero. (For this example, we could also use a parameter

estimation technique by expressing the height differences as

functions of the heights of each point.) For the height

difference measurements, the conditions are easily formulated,

but in many cases, finding the conditions can be very diffi-

cult. We will develop this method because some problems can

be solved very easily with this approach.

We express the (linearized) conditions between the

observables as

u=u0 (E.10)

where U is a matrix of the condition partial derivatives and

Uo is a vector of constants. (For the height difference case U
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would be a (m-n)xm matrix containing ones, minus ones and
zeroes, and the U an (m-n) null vector). As in the case of

-0

the parameter estimation, the observations are related to

their expectations by = +. We now want to find estimates

of the expectations which satisfy the conditions, subject to

vCvl being a minimum, where vT = Y-^. To solve this problem

we use Lagrange multipliers i.e. we minimize the function, E,

givei by

E :v V_1v - 2K (Uv-(U (E.11)

where 2 KT are the Lagrange multipliers.

A stationary value of E will occur when 6E/6v = 2V Iv

2 UTK = 0, and therefore E will have a stationary value when

v V UTK • (E.12)

The Lagrange multipliers can be determined be substituting Uv

SUo-U2 into the above equation which yields

T -1K=(UV oT) - I (Uo-O[) .(E.13)

We may caluculate the post-fit residuals by substituting

Equation (E.13) into Equation (E.12). Hence,

T(U UT-1
v =V UTuvu) (Uo-). (E.14)

0 TThe covariance matrix of v will be given by <vv >. Hence,

T = ~ T Tl1 T T 1
<vv > <V OT (UV EE) - (U2) (Uo-U2) (UVCCUI- UV >

- ° . - .- o . ° .. ° °. ,. '. ,- o, - - . . . - . . . , . " .. . .. o - , , . • °. ° . ° -. . , - -. -. - ° °- , ~ E:



-421-

which reduces to

Vv - V UT(UV U) UV (E.l5)

assuming that <!> = 0, and that U is not a random vector.

We should note that the estimation using either para-

meters or conditions will yield identical results, provided

that the parameterization is consistent with the conditions.

The only distinction between the two techniques is the ease of

implementation.

Equation (E.14) shows both the advantages and disadvan-

tages of estimation using conditions. The matrix to be

inverted in Equation (E.14) has the dimensions of the number

of conditions. If the number of conditions is small, then

Equation (E.14) can be easily solved. If the number of condi-

tions is large, then the inversion of the matrix in Equation

(E.14) is formidable.

One particular application cf Equation (E.14) which we

will investigate is "parameter supression." Quite often after

parameters have been estimated from a set of observations, we

need to determine the changes that would occur to the

parameter estimates if a subset of the parameters had not been

estimated. We could, of course, repeat the estimation with

these parameters not estimated, but this could be very time

consuming. Estimations by condition provides an ideal solu-

tion to this problem.

We denote the estimated parameters by (ARIAs) T where-we

bave partitioned the parameter estimates into the subsets; As

%

J -- ' " 0 & ' ' ' -, . 'k -. ' - ' ' ' . ' ' ' " ./ ; . % " , " ' ' ' . ' - . . . , -, -.
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is the subset of parameters we wish to suppress, anf' at are

the remaining parameters. Clearly, had Ats not been estimated

then A s would equal a null vector. These are our conditions.

The condition equation, (Equation E.10), becomes

(0 1) A~=0

-Xs

where I is a (square) unit matrix with dimensions of the

number of parameters to be suppressed. If we now substitute

these conditions into Equation (E.14) with the covariance

matrix of the parameter estimates partitioned as

V = V VC = xx xs

Vxs Vss

we obtain

-l a
= -V- 55 AR~ (E.16)

4sA s

where AW'and AR are the corrections to estimates of the

parameter corrections which were obtained when all of the

parameters were estimated. (Note, that when AR are added to

the original initial parameter estimates (hRs), the net

correction to the supressed parameters will be zero.)

The covariance matrix of (AR'jh)T may be calculated

from Equation (E.15). The result is

, = V - 1 T
V x -Vx sVxs o (E.17)

0 0

where we note that AR has zero variance because we assumed

...'.. . -.. " " " " " " .- ". " .".-
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these parameters were perfectly known when their estimation

was supressed.

If only one parameter is supressed, Equations (E.16) and

(E.17) reduce to

A!= -(Pjsj/s) ARs  (E.18.a)

and
2 2

(c = (l-Pjs) aj (E.18.b)

where A 5 is the estimate of the jth parameter correction when

parameter s is suppressed, pjs is the correlation between the

parameter estimates, a2 and a are the variances of the para-

meter estimates, and (at5 2 is the variance of the new estimate
I

of the j th parameter. These simple formulas are very useful

for studying the interaction between parameters.

We now return to Equation (E.6) to study methods which

can be used to solve this equation when the normal equations

become too large to be handled in the main memory of the

computer. The technique we will develop is called sequential

least squares (see, e.g., Kaula, 1966; Morrison, 1969). We

wish to find an equivalent solution to Equation (E.6) which

does not involve inverting the complete normal equations at

one time. We can find such a solution provided that none of

the observations depend on all the parameters. We will

subdivide the parameters into two types: global parameters,

which affect large numbers of observations (e.g., station

positions and radio source positions); and local parameters,

which affect a relatively small number of observations (e.g.



-424-

clock and atmosphere polynomial coefficients).

There are many techniques which we could use to develop

such a solution. One method which is particularly straight-

forward is to treat the parameters as observations. (We have

already been doing this; remember, the group delay measure-

ments are themselves estimates of parameters obtained from

estimating the intercept and slope of the video DC phases; see

Apperdix B.)

We commence by extending Equation (E.2) to include the

parameters as observations, which yields

6 IAPI = AI~x + leI (E.19)

where AR are a priori estimates of the parameter corrections

with errors cx whose covariance matrix is N 1I.  f we now

we 
n

apply the estimator Equation (E.4) to the above equation we

find

T IV-1 -1: [A I]iV[ 1  0 IIAI[AT I]jV-  I 0 IIj
I0 NgIIII I o gll

which reduces to

A cT-A g-l T -l
= (A A + N )(A V tAY + N AS) (E.20)

Equation (E.20) is the sequential least squares estimator.

This equation is very easily implemented into a standard least

squares program because the normal equations are formed

exactly the same way as they normally would be formed

(ATv iA) and then, before inversion, the inverse of the a

I'"".. ":.""- -" " "--, - ."" ' .'" " " . -. - -:"- -: "" "" .' , .;.I< : .
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priori covariance matrix is added to them. Similarly, the
correction vector (A T Vt1AY is calculated as it normally wouldF- C
be calculated, and then the a priori correction vector (N At)

g
is added. When the solution given by Equation (E.20) is
completed, the covariance matrix of the global parameters are

"stripped" from the inverse of the normal equations to yield

an updated global parameter covariance matrix which can be

-sed when the next set of data is to be included in the

solution.

Once all of the data have been used in the sequential or

global solution, the estimates of the global parameters are

the same as those estimates which would have been obtained

from a standard least squares solution using all of the data

simultaneously. The estimates of the local parameters for

each data set, except the last, which were obtained as the

sequential solution was carried out are, however, not correct

(because their estimation did not use the information about

the global parameters which would be obtained from future data

sets).

To recover the estimates of the local parameters a backr solution is run. To construct the back solution we use the

property of sequential least squares solutions, that the local

parameters for the last data arc used are recovered correctly

(because all of the information about the global parameters

has been included in solution) . To use this property in the

back solution we essentially remove the contribution of a data

arc from the (full) global solution and then add it back in as
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if it were the last arc in the solution. This may sound like

a sleight of hand, but the technique should work.

The implementation of this technique is relatively

straight-forward but is more complicated than the forward

solution.

To see how the back solution is carried out we will run

through the matrix manipulations needed to process one arc

during the back solution. The relationship between the

observations and the parameters (separated into local and

global parameters, AxI and AXg, respectively) will be (from

Equation E.2)

,A = [Ag Aj]IAXgI + - (E.21)

I Ax l

The normal equations for the solution will be given by

(including the a priori covariances for global parameters),

ccVA I Ic

(E.22)

where (N f-) is the covariance matrix of the global para-g

meters which would be obtained from all of the data excepting

the arc which is being processed (in general this matrix is

not known). In order to reduce the number of symbols needed

in future equations, we will write Equation (E.22) as

T1  1  
(E.23)

BT 22

12A
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where B 1  A TV- 1A g(N ,f -l = ATV 22 ATV-1
g cc g g B12  g cc 1, B 22 icc All

T -1 T -1
=AgV EE -A+(N )-Ax and z1=A V Ay. We should note the

matrices B1 2 and B2 2, and the vector 2, are known, but the

matrix, Bi1 , and the vector, 
2g, are not known (unless this

arc was the last arc to be used during the forward solution).

The matrix B11 and the vector 2 may be calculated by treating

this arc as if it were the last arc in the solutiun.

If Equation (E.23) represented the last arc in the solu-

tion, then the inverse of the normal equations would be

B-- 1 2  (N C
1 2  (E.24)

8T B C T C2
B1 2  222

where (N f)- is the final global parameter covariance matrix.

(The other elements in the inverse C1 2 and C2 2 do not interest

us at this time.) We may find an expression for (Nf) in
g

terms of Bi, B1 2 and B2 2, by performing a partitioned inverse

of the normal equations. This partitioned inverse will be

given by (see, e.g., Beyer, 1978 p.11)

f 1  
1  T -1

gN )-1 = (B lB12B 2 2B1 2 )

By re-arranging the above equation, we can obtain an expres-

sion for unknown matrix Bi1 , i.e.,
f -iT

B =N +B (E.25)
11 g 12g 2 2 12 *

To find the unknown vector 2g, we use a similar procedure.

.%
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From Equations (E.22) and (E.24), we have

f -l
(N) C 2gg 12 g g
T
C2  C22  1 1

and the estimates of the global parameters will be given by

(Nf-g+ C2! = (E.26)
g g 12 g

Again using the partitioned inverse of the left hand side of

Equation (E.24), we can express (the unknown) C12 matrix in

wterms of the (known) matrices BI1 (Equation B.25), B2 2 and

BI2, i.e.,

2'• ' f  -1 -1
C12 = 12g B222•

Therefore

f-1 f-1= (N) _ (N) B -i
g g g B 12221

which may be re-arranged to yield

g= (Nf) + B 2B2 ] (E.27)

Now we can substitute the calculated matrix Bi and vector 2g

into the normal equations and the back solution can be com-

pleted using the standard SOLVE software.

Global solution capability was added to SOLVE by adding

three programs to the SOLVE suite of programs. Program INITL

will save the global parameter adjustments and covariance

matrix from any SOLVE solution. Program APCOV (APply

COVariances) will add the covariances saved by INITL to the

0p "
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normal equations (this program is automatically scheduled by

SOLVE) and APBAK will carry out the matrix multiplications for

the back solutions (again this program is automatically

scheduled).

The global solution software has some limitations

(imposed by the computer size). Currently, the maximum number

of parameters which can be estimated during any single arc is

95. As data from many experiments are combined the number of

global parameters (source and station positions) can get

sufficiently large that the 95 parameter limit for an arc can

0 be exceeded. There are two ways to overcome this problem. The

simplest method is to suppress some of the global parameters.

This could be done for the positions of radio sources which

are only used in a single experiment. The utility of this

technique is limited, however. An alternative technique,

which has not yet been implemented in the SOLVE programs, is

to combine separate global solutions together, i.e., if the

number of global parameters becomes too large, a second global

solution is started. When this second solution is completed,

the two covariance matrices are combined to yield the total

global so ition.

The mathematical model which would be used to combine the

solutions is

x x()=~ (E.28)

.(2)exg

where 0 is a rotation matrix and f is vector of rotation

',.' . 2 .. - , - "" " '" - * "-"• " -" -" '-" . *** -"- * -"" " * ' -" . ..'-~ "- :. -'. "-: ; - -" "-? ¥ -'*. . . . . . . .. . .- *N.
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parameters which accounts for rotations of the crust-fixed and

"inertial" coordinate systems (see Chapter 5) between the two

global solutions. Equation (E.28) can be solved using the

techniques which have already been described.

Many of the techniques introduced in this appendix are

used in other sections of this thesis and the practical

implementation of these techniques may be clearer when they

are discussed in these sections.
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Appendix F. Effects of polarization leakage

The Mark III VLBI system nominally observes right-

circularly polarized (RCP) radiation. However, since perfect

feed horns can not be made some amount of the left-circularly

polarized (LCP) radiation from the radio source will "leak"

into the output of the nominally RCP feed horn. In this

appendix we consider the effects of such a leakage on the

group- and phase-delay measurements.

In order to examine the effects of polarization leakage,

we commence by writing the expressions for the spectra of the

signals at the outputs of the feed horns of the antennas which

form an interferometer. We do this by writing a more general-

ized form of Equation (A.5). The spectra of the signal,

XI(w) and X2 (w), at the outputs of the feed horns will be

given by (see Appendix A for introductory discussions):

Sl(W) = + + (F.l.a)

X(w) = KR' + KYL' + N' (F.l.b)

22

where R and R' are the RCP components of the signal; E and E'

are the LCP components of the signal; A i and R' are noise

components; K is a constant which represents the difference in

sensitivity of the two antennas (see Equation (A.5)); and

are complex constants which express the amount of LCP radia-

tion leaking into the outputs of the feed horns. These

constants are complex to allow for phase shifts of the LCP

signals relative to RCP signals after these signals have

I.
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propagated through the feed horns. Equations (F.l) are

derived from Equation (A.5) by explictly writing the signals

and S' in terms of their RCP and LCP components. For perfect

RCP feed horns and T would both be zero. We now proceed in

a manner similar to the analysis which was used in examining

Equation (A.5). The RCP components A and R' are related to

each other by (see Appendix A for details):

R,(w) = R(w) e-ia + (F.2.a)

. where a = (W-wo) g + t + W1pAt; Wo is the reference (angular)

frequency to which the visibility phase, t', is referred; Tg

is the group delay; I is the phase delay rate; At is the time
p

interval between the epoch to which the delay measurements are

referred and the temporal center of the data used to compute

the spectra (see Equation (A.5) for more detailed discus-

sions); and A@ is the difference of the feed horn position

angles at the two antennas (see Appendix D for details). The

difference of the feed horn position angles was implicity

included in in the derivation of Equation (A.5). We

explicity include it here because its effect on the LCP

signals is opposite signed to its effect on the RCP signals.

We may write an expression similar to Equation (F.2.a) for the

LCP signals:

LI(w) = L(w) eia- (F.2.b)

where we note that the feed position angle, A4, affects the

phase of E'(w) with opposite sign of its effect on

The cross spectrum of the signals at the output of the

b ~~~~~~~~~~~..". .. ........... .. -..... . ........ .. ......... ...- .b. ... ....... %- '-. '



-433-

feed horns will be

* - . * -- _, _
lX2 = KRR' + Ky RL' + + KRLN'' + Koy LL'

1 LN R211

+_ R* _ --+ KM1 -' + Ky N'L' + N'Nj

and the expectation of this cross sprectrum is

- -* -2 -ia+A4- + K5L 2 eia-A(.
<XX> = KR e(F.3

where we have assumed that the radiation from the radio source

is unpolarized (i.e., <ER > = 0), and we have substituted the
relationships between the RCP and the LCP signals received at

the two antennas (Equations (F.2)). This cross spectrum is

shown graphically in phasor form in Figure F.l. We see from

this figure that the angle between the LCP and RCP phasors is

2Aq+arg(oy ). If the LCP signal is small compared to the RCP

signal, i.e., mag(FT )<<l, we may express the error in the

visibilty phase, At,, due to the leakage of the LCP radiation

as

A mag(ay) sin(2A, + arg( Y)). (F.4)

The group delay error due to the polariztion leakage can be

obtained by differentiating A¢O with respect to (angular)

frequency:

A- mag( 5(F*)/6w ) sin(2A4 + arg( b($*)/w

which can written in the form

= jt AC sin(2Aj + & ) (F.5)

p--* P ar-*8 )a
where AT = mag( 6( )/ ) and &P arg( "y w

We should note that the polarization leakage will

X %
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Figure F.1 Phasor diagram of the effects of polarization leakage
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introduce errors in the group delay and the visibility phase

measurements only if the feed horns at both antennas in an

interferometer are leaking LCP signals, i.e., both and j

must be non-zero. For this reason, polarization leakage can

cause closure errors when two antennas in a triplet of of

antennas have defective feed horns. Only the measurements

with the interferometer which contains the two antennas with

defective feed horns will be affected by the LCP signals. The

closure errors which are believed to be due to polarization

leakage are discussed in Section 3.3.

J

d.i
0
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